MayBashendy commited on
Commit
abd04fc
·
verified ·
1 Parent(s): 26b44d8

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +341 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k14_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k14_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.9146
19
+ - Qwk: 0.6056
20
+ - Mse: 0.9146
21
+ - Rmse: 0.9563
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.0190 | 2 | 6.5517 | 0.0308 | 6.5517 | 2.5596 |
53
+ | No log | 0.0381 | 4 | 4.7869 | 0.0766 | 4.7869 | 2.1879 |
54
+ | No log | 0.0571 | 6 | 2.8272 | 0.0988 | 2.8272 | 1.6814 |
55
+ | No log | 0.0762 | 8 | 2.5314 | 0.0940 | 2.5314 | 1.5910 |
56
+ | No log | 0.0952 | 10 | 2.1412 | 0.2319 | 2.1412 | 1.4633 |
57
+ | No log | 0.1143 | 12 | 1.5841 | 0.1667 | 1.5841 | 1.2586 |
58
+ | No log | 0.1333 | 14 | 1.6739 | 0.1165 | 1.6739 | 1.2938 |
59
+ | No log | 0.1524 | 16 | 1.7918 | 0.1538 | 1.7918 | 1.3386 |
60
+ | No log | 0.1714 | 18 | 1.7448 | 0.1714 | 1.7448 | 1.3209 |
61
+ | No log | 0.1905 | 20 | 1.6869 | 0.2857 | 1.6869 | 1.2988 |
62
+ | No log | 0.2095 | 22 | 1.5199 | 0.2883 | 1.5199 | 1.2328 |
63
+ | No log | 0.2286 | 24 | 1.3379 | 0.2430 | 1.3379 | 1.1567 |
64
+ | No log | 0.2476 | 26 | 1.1810 | 0.4444 | 1.1810 | 1.0867 |
65
+ | No log | 0.2667 | 28 | 1.0280 | 0.6383 | 1.0280 | 1.0139 |
66
+ | No log | 0.2857 | 30 | 1.0030 | 0.6622 | 1.0030 | 1.0015 |
67
+ | No log | 0.3048 | 32 | 0.9486 | 0.6846 | 0.9486 | 0.9740 |
68
+ | No log | 0.3238 | 34 | 0.9023 | 0.7075 | 0.9023 | 0.9499 |
69
+ | No log | 0.3429 | 36 | 0.9863 | 0.6857 | 0.9863 | 0.9931 |
70
+ | No log | 0.3619 | 38 | 1.1702 | 0.4333 | 1.1702 | 1.0818 |
71
+ | No log | 0.3810 | 40 | 1.3630 | 0.3243 | 1.3630 | 1.1675 |
72
+ | No log | 0.4 | 42 | 1.2735 | 0.3509 | 1.2735 | 1.1285 |
73
+ | No log | 0.4190 | 44 | 1.1222 | 0.4463 | 1.1222 | 1.0593 |
74
+ | No log | 0.4381 | 46 | 0.9889 | 0.5410 | 0.9889 | 0.9945 |
75
+ | No log | 0.4571 | 48 | 0.9494 | 0.6667 | 0.9494 | 0.9744 |
76
+ | No log | 0.4762 | 50 | 0.9571 | 0.6667 | 0.9571 | 0.9783 |
77
+ | No log | 0.4952 | 52 | 0.9909 | 0.5926 | 0.9909 | 0.9954 |
78
+ | No log | 0.5143 | 54 | 0.9477 | 0.6763 | 0.9477 | 0.9735 |
79
+ | No log | 0.5333 | 56 | 0.9166 | 0.6667 | 0.9166 | 0.9574 |
80
+ | No log | 0.5524 | 58 | 0.9143 | 0.6620 | 0.9143 | 0.9562 |
81
+ | No log | 0.5714 | 60 | 0.8606 | 0.7632 | 0.8606 | 0.9277 |
82
+ | No log | 0.5905 | 62 | 0.8959 | 0.6538 | 0.8959 | 0.9465 |
83
+ | No log | 0.6095 | 64 | 0.8634 | 0.7044 | 0.8634 | 0.9292 |
84
+ | No log | 0.6286 | 66 | 0.8516 | 0.7389 | 0.8516 | 0.9228 |
85
+ | No log | 0.6476 | 68 | 1.0183 | 0.5899 | 1.0183 | 1.0091 |
86
+ | No log | 0.6667 | 70 | 1.3112 | 0.5109 | 1.3112 | 1.1451 |
87
+ | No log | 0.6857 | 72 | 1.3810 | 0.5070 | 1.3810 | 1.1751 |
88
+ | No log | 0.7048 | 74 | 1.0817 | 0.5655 | 1.0817 | 1.0400 |
89
+ | No log | 0.7238 | 76 | 1.0033 | 0.5674 | 1.0033 | 1.0017 |
90
+ | No log | 0.7429 | 78 | 0.9485 | 0.6286 | 0.9485 | 0.9739 |
91
+ | No log | 0.7619 | 80 | 0.9563 | 0.6131 | 0.9563 | 0.9779 |
92
+ | No log | 0.7810 | 82 | 1.0053 | 0.6222 | 1.0053 | 1.0027 |
93
+ | No log | 0.8 | 84 | 1.0341 | 0.5625 | 1.0341 | 1.0169 |
94
+ | No log | 0.8190 | 86 | 1.0190 | 0.5970 | 1.0190 | 1.0094 |
95
+ | No log | 0.8381 | 88 | 0.9736 | 0.5985 | 0.9736 | 0.9867 |
96
+ | No log | 0.8571 | 90 | 0.9543 | 0.5957 | 0.9543 | 0.9769 |
97
+ | No log | 0.8762 | 92 | 1.0101 | 0.6331 | 1.0101 | 1.0050 |
98
+ | No log | 0.8952 | 94 | 1.0883 | 0.5735 | 1.0883 | 1.0432 |
99
+ | No log | 0.9143 | 96 | 1.1082 | 0.5571 | 1.1082 | 1.0527 |
100
+ | No log | 0.9333 | 98 | 1.0794 | 0.6309 | 1.0794 | 1.0389 |
101
+ | No log | 0.9524 | 100 | 1.0070 | 0.6443 | 1.0070 | 1.0035 |
102
+ | No log | 0.9714 | 102 | 1.0181 | 0.6267 | 1.0181 | 1.0090 |
103
+ | No log | 0.9905 | 104 | 0.9894 | 0.6788 | 0.9894 | 0.9947 |
104
+ | No log | 1.0095 | 106 | 0.9548 | 0.7215 | 0.9548 | 0.9771 |
105
+ | No log | 1.0286 | 108 | 1.0065 | 0.6790 | 1.0065 | 1.0033 |
106
+ | No log | 1.0476 | 110 | 1.0297 | 0.6452 | 1.0297 | 1.0147 |
107
+ | No log | 1.0667 | 112 | 1.0482 | 0.6622 | 1.0482 | 1.0238 |
108
+ | No log | 1.0857 | 114 | 1.0103 | 0.6914 | 1.0103 | 1.0052 |
109
+ | No log | 1.1048 | 116 | 0.8010 | 0.7456 | 0.8010 | 0.8950 |
110
+ | No log | 1.1238 | 118 | 0.7259 | 0.7394 | 0.7259 | 0.8520 |
111
+ | No log | 1.1429 | 120 | 0.7342 | 0.75 | 0.7342 | 0.8568 |
112
+ | No log | 1.1619 | 122 | 0.7965 | 0.7412 | 0.7965 | 0.8925 |
113
+ | No log | 1.1810 | 124 | 0.7931 | 0.7412 | 0.7931 | 0.8906 |
114
+ | No log | 1.2 | 126 | 0.7182 | 0.7349 | 0.7182 | 0.8474 |
115
+ | No log | 1.2190 | 128 | 0.6559 | 0.7532 | 0.6559 | 0.8099 |
116
+ | No log | 1.2381 | 130 | 0.6494 | 0.8025 | 0.6494 | 0.8058 |
117
+ | No log | 1.2571 | 132 | 0.6930 | 0.7515 | 0.6930 | 0.8324 |
118
+ | No log | 1.2762 | 134 | 0.9638 | 0.6957 | 0.9638 | 0.9817 |
119
+ | No log | 1.2952 | 136 | 1.1964 | 0.6272 | 1.1964 | 1.0938 |
120
+ | No log | 1.3143 | 138 | 1.1772 | 0.6740 | 1.1772 | 1.0850 |
121
+ | No log | 1.3333 | 140 | 1.0636 | 0.6778 | 1.0636 | 1.0313 |
122
+ | No log | 1.3524 | 142 | 0.7139 | 0.7514 | 0.7139 | 0.8449 |
123
+ | No log | 1.3714 | 144 | 0.6140 | 0.8023 | 0.6140 | 0.7836 |
124
+ | No log | 1.3905 | 146 | 0.6483 | 0.7845 | 0.6483 | 0.8052 |
125
+ | No log | 1.4095 | 148 | 0.8337 | 0.75 | 0.8337 | 0.9130 |
126
+ | No log | 1.4286 | 150 | 1.1290 | 0.6798 | 1.1290 | 1.0625 |
127
+ | No log | 1.4476 | 152 | 1.0199 | 0.7059 | 1.0199 | 1.0099 |
128
+ | No log | 1.4667 | 154 | 0.7289 | 0.7545 | 0.7289 | 0.8538 |
129
+ | No log | 1.4857 | 156 | 0.5757 | 0.8077 | 0.5757 | 0.7588 |
130
+ | No log | 1.5048 | 158 | 0.5842 | 0.8 | 0.5842 | 0.7643 |
131
+ | No log | 1.5238 | 160 | 0.6127 | 0.7848 | 0.6127 | 0.7827 |
132
+ | No log | 1.5429 | 162 | 0.6933 | 0.7342 | 0.6933 | 0.8327 |
133
+ | No log | 1.5619 | 164 | 0.7437 | 0.6933 | 0.7437 | 0.8624 |
134
+ | No log | 1.5810 | 166 | 0.8044 | 0.6575 | 0.8044 | 0.8969 |
135
+ | No log | 1.6 | 168 | 0.8255 | 0.6395 | 0.8255 | 0.9086 |
136
+ | No log | 1.6190 | 170 | 0.6713 | 0.7534 | 0.6713 | 0.8193 |
137
+ | No log | 1.6381 | 172 | 0.6388 | 0.7843 | 0.6388 | 0.7992 |
138
+ | No log | 1.6571 | 174 | 0.6740 | 0.7484 | 0.6740 | 0.8210 |
139
+ | No log | 1.6762 | 176 | 0.5706 | 0.8375 | 0.5706 | 0.7554 |
140
+ | No log | 1.6952 | 178 | 0.5815 | 0.7643 | 0.5815 | 0.7626 |
141
+ | No log | 1.7143 | 180 | 0.6285 | 0.7532 | 0.6285 | 0.7928 |
142
+ | No log | 1.7333 | 182 | 0.6614 | 0.7532 | 0.6614 | 0.8133 |
143
+ | No log | 1.7524 | 184 | 0.7129 | 0.7152 | 0.7129 | 0.8443 |
144
+ | No log | 1.7714 | 186 | 0.7282 | 0.7361 | 0.7282 | 0.8533 |
145
+ | No log | 1.7905 | 188 | 0.7503 | 0.7286 | 0.7503 | 0.8662 |
146
+ | No log | 1.8095 | 190 | 0.8556 | 0.7 | 0.8556 | 0.9250 |
147
+ | No log | 1.8286 | 192 | 0.8324 | 0.6906 | 0.8324 | 0.9123 |
148
+ | No log | 1.8476 | 194 | 0.7918 | 0.7050 | 0.7918 | 0.8898 |
149
+ | No log | 1.8667 | 196 | 0.6338 | 0.7639 | 0.6338 | 0.7961 |
150
+ | No log | 1.8857 | 198 | 0.5462 | 0.8289 | 0.5462 | 0.7390 |
151
+ | No log | 1.9048 | 200 | 0.4957 | 0.8387 | 0.4957 | 0.7041 |
152
+ | No log | 1.9238 | 202 | 0.4710 | 0.8395 | 0.4710 | 0.6863 |
153
+ | No log | 1.9429 | 204 | 0.4777 | 0.8571 | 0.4777 | 0.6911 |
154
+ | No log | 1.9619 | 206 | 0.4964 | 0.8478 | 0.4964 | 0.7046 |
155
+ | No log | 1.9810 | 208 | 0.6313 | 0.8085 | 0.6313 | 0.7945 |
156
+ | No log | 2.0 | 210 | 0.9157 | 0.73 | 0.9157 | 0.9569 |
157
+ | No log | 2.0190 | 212 | 0.8711 | 0.7320 | 0.8711 | 0.9333 |
158
+ | No log | 2.0381 | 214 | 0.8205 | 0.7368 | 0.8205 | 0.9058 |
159
+ | No log | 2.0571 | 216 | 0.6370 | 0.7802 | 0.6370 | 0.7981 |
160
+ | No log | 2.0762 | 218 | 0.5574 | 0.8205 | 0.5574 | 0.7466 |
161
+ | No log | 2.0952 | 220 | 0.6803 | 0.7432 | 0.6803 | 0.8248 |
162
+ | No log | 2.1143 | 222 | 0.6350 | 0.7785 | 0.6350 | 0.7968 |
163
+ | No log | 2.1333 | 224 | 0.6395 | 0.7333 | 0.6395 | 0.7997 |
164
+ | No log | 2.1524 | 226 | 0.7550 | 0.7630 | 0.7550 | 0.8689 |
165
+ | No log | 2.1714 | 228 | 0.8245 | 0.7630 | 0.8245 | 0.9080 |
166
+ | No log | 2.1905 | 230 | 0.7387 | 0.7545 | 0.7387 | 0.8595 |
167
+ | No log | 2.2095 | 232 | 0.6800 | 0.7297 | 0.6800 | 0.8246 |
168
+ | No log | 2.2286 | 234 | 0.6665 | 0.7465 | 0.6665 | 0.8164 |
169
+ | No log | 2.2476 | 236 | 0.6284 | 0.7755 | 0.6284 | 0.7927 |
170
+ | No log | 2.2667 | 238 | 0.5438 | 0.7974 | 0.5438 | 0.7375 |
171
+ | No log | 2.2857 | 240 | 0.5226 | 0.8171 | 0.5226 | 0.7229 |
172
+ | No log | 2.3048 | 242 | 0.5855 | 0.7955 | 0.5855 | 0.7652 |
173
+ | No log | 2.3238 | 244 | 0.6964 | 0.7709 | 0.6964 | 0.8345 |
174
+ | No log | 2.3429 | 246 | 0.7315 | 0.7647 | 0.7315 | 0.8553 |
175
+ | No log | 2.3619 | 248 | 0.6716 | 0.7389 | 0.6716 | 0.8195 |
176
+ | No log | 2.3810 | 250 | 0.6520 | 0.7778 | 0.6520 | 0.8074 |
177
+ | No log | 2.4 | 252 | 0.7122 | 0.7606 | 0.7122 | 0.8439 |
178
+ | No log | 2.4190 | 254 | 0.6975 | 0.7101 | 0.6975 | 0.8352 |
179
+ | No log | 2.4381 | 256 | 0.7627 | 0.6667 | 0.7627 | 0.8733 |
180
+ | No log | 2.4571 | 258 | 0.9079 | 0.6790 | 0.9079 | 0.9528 |
181
+ | No log | 2.4762 | 260 | 0.9225 | 0.7086 | 0.9225 | 0.9604 |
182
+ | No log | 2.4952 | 262 | 0.7960 | 0.7381 | 0.7960 | 0.8922 |
183
+ | No log | 2.5143 | 264 | 0.6119 | 0.7722 | 0.6119 | 0.7822 |
184
+ | No log | 2.5333 | 266 | 0.6536 | 0.8158 | 0.6536 | 0.8085 |
185
+ | No log | 2.5524 | 268 | 0.6367 | 0.8079 | 0.6367 | 0.7979 |
186
+ | No log | 2.5714 | 270 | 0.6376 | 0.7432 | 0.6376 | 0.7985 |
187
+ | No log | 2.5905 | 272 | 0.8925 | 0.6667 | 0.8925 | 0.9447 |
188
+ | No log | 2.6095 | 274 | 1.0205 | 0.65 | 1.0205 | 1.0102 |
189
+ | No log | 2.6286 | 276 | 0.9694 | 0.6395 | 0.9694 | 0.9846 |
190
+ | No log | 2.6476 | 278 | 0.8762 | 0.6324 | 0.8762 | 0.9360 |
191
+ | No log | 2.6667 | 280 | 0.7778 | 0.6357 | 0.7778 | 0.8819 |
192
+ | No log | 2.6857 | 282 | 0.7090 | 0.7007 | 0.7090 | 0.8420 |
193
+ | No log | 2.7048 | 284 | 0.6955 | 0.7067 | 0.6955 | 0.8340 |
194
+ | No log | 2.7238 | 286 | 0.7898 | 0.6875 | 0.7898 | 0.8887 |
195
+ | No log | 2.7429 | 288 | 0.8869 | 0.6788 | 0.8869 | 0.9418 |
196
+ | No log | 2.7619 | 290 | 0.7946 | 0.7044 | 0.7946 | 0.8914 |
197
+ | No log | 2.7810 | 292 | 0.6416 | 0.7582 | 0.6416 | 0.8010 |
198
+ | No log | 2.8 | 294 | 0.6091 | 0.7808 | 0.6091 | 0.7804 |
199
+ | No log | 2.8190 | 296 | 0.6335 | 0.8 | 0.6335 | 0.7959 |
200
+ | No log | 2.8381 | 298 | 0.6439 | 0.7552 | 0.6439 | 0.8024 |
201
+ | No log | 2.8571 | 300 | 0.8212 | 0.6667 | 0.8212 | 0.9062 |
202
+ | No log | 2.8762 | 302 | 1.0236 | 0.6303 | 1.0236 | 1.0118 |
203
+ | No log | 2.8952 | 304 | 0.9824 | 0.6173 | 0.9824 | 0.9912 |
204
+ | No log | 2.9143 | 306 | 0.7579 | 0.7162 | 0.7579 | 0.8706 |
205
+ | No log | 2.9333 | 308 | 0.7078 | 0.7429 | 0.7078 | 0.8413 |
206
+ | No log | 2.9524 | 310 | 0.7385 | 0.6957 | 0.7385 | 0.8594 |
207
+ | No log | 2.9714 | 312 | 0.7357 | 0.6815 | 0.7357 | 0.8577 |
208
+ | No log | 2.9905 | 314 | 0.8328 | 0.6522 | 0.8328 | 0.9126 |
209
+ | No log | 3.0095 | 316 | 0.8631 | 0.6525 | 0.8631 | 0.9290 |
210
+ | No log | 3.0286 | 318 | 0.8203 | 0.6667 | 0.8203 | 0.9057 |
211
+ | No log | 3.0476 | 320 | 0.7236 | 0.7183 | 0.7236 | 0.8506 |
212
+ | No log | 3.0667 | 322 | 0.6998 | 0.7234 | 0.6998 | 0.8365 |
213
+ | No log | 3.0857 | 324 | 0.6989 | 0.6716 | 0.6989 | 0.8360 |
214
+ | No log | 3.1048 | 326 | 0.7365 | 0.6815 | 0.7365 | 0.8582 |
215
+ | No log | 3.1238 | 328 | 0.7779 | 0.6316 | 0.7779 | 0.8820 |
216
+ | No log | 3.1429 | 330 | 0.8528 | 0.6232 | 0.8528 | 0.9235 |
217
+ | No log | 3.1619 | 332 | 0.9292 | 0.5915 | 0.9292 | 0.9639 |
218
+ | No log | 3.1810 | 334 | 0.8466 | 0.6164 | 0.8466 | 0.9201 |
219
+ | No log | 3.2 | 336 | 0.7558 | 0.6395 | 0.7558 | 0.8694 |
220
+ | No log | 3.2190 | 338 | 0.8008 | 0.6538 | 0.8008 | 0.8949 |
221
+ | No log | 3.2381 | 340 | 0.7753 | 0.6389 | 0.7753 | 0.8805 |
222
+ | No log | 3.2571 | 342 | 0.7108 | 0.6812 | 0.7108 | 0.8431 |
223
+ | No log | 3.2762 | 344 | 0.7193 | 0.6906 | 0.7193 | 0.8481 |
224
+ | No log | 3.2952 | 346 | 0.8056 | 0.6528 | 0.8056 | 0.8976 |
225
+ | No log | 3.3143 | 348 | 0.8307 | 0.6438 | 0.8307 | 0.9114 |
226
+ | No log | 3.3333 | 350 | 0.7422 | 0.6761 | 0.7422 | 0.8615 |
227
+ | No log | 3.3524 | 352 | 0.6941 | 0.7153 | 0.6941 | 0.8331 |
228
+ | No log | 3.3714 | 354 | 0.6970 | 0.75 | 0.6970 | 0.8349 |
229
+ | No log | 3.3905 | 356 | 0.7666 | 0.6715 | 0.7666 | 0.8755 |
230
+ | No log | 3.4095 | 358 | 1.0083 | 0.64 | 1.0083 | 1.0041 |
231
+ | No log | 3.4286 | 360 | 1.1237 | 0.6234 | 1.1237 | 1.0600 |
232
+ | No log | 3.4476 | 362 | 1.0229 | 0.6197 | 1.0229 | 1.0114 |
233
+ | No log | 3.4667 | 364 | 0.9055 | 0.6269 | 0.9055 | 0.9516 |
234
+ | No log | 3.4857 | 366 | 0.7624 | 0.6970 | 0.7624 | 0.8731 |
235
+ | No log | 3.5048 | 368 | 0.7026 | 0.7391 | 0.7026 | 0.8382 |
236
+ | No log | 3.5238 | 370 | 0.7007 | 0.7050 | 0.7007 | 0.8371 |
237
+ | No log | 3.5429 | 372 | 0.6979 | 0.6950 | 0.6979 | 0.8354 |
238
+ | No log | 3.5619 | 374 | 0.6456 | 0.7871 | 0.6456 | 0.8035 |
239
+ | No log | 3.5810 | 376 | 0.6281 | 0.7651 | 0.6281 | 0.7925 |
240
+ | No log | 3.6 | 378 | 0.6547 | 0.7755 | 0.6547 | 0.8091 |
241
+ | No log | 3.6190 | 380 | 0.7007 | 0.7413 | 0.7007 | 0.8371 |
242
+ | No log | 3.6381 | 382 | 0.8162 | 0.6986 | 0.8162 | 0.9034 |
243
+ | No log | 3.6571 | 384 | 0.8806 | 0.6483 | 0.8806 | 0.9384 |
244
+ | No log | 3.6762 | 386 | 0.7733 | 0.6892 | 0.7733 | 0.8794 |
245
+ | No log | 3.6952 | 388 | 0.6396 | 0.7347 | 0.6396 | 0.7997 |
246
+ | No log | 3.7143 | 390 | 0.5970 | 0.7974 | 0.5970 | 0.7727 |
247
+ | No log | 3.7333 | 392 | 0.5712 | 0.8052 | 0.5712 | 0.7558 |
248
+ | No log | 3.7524 | 394 | 0.6488 | 0.7456 | 0.6488 | 0.8055 |
249
+ | No log | 3.7714 | 396 | 0.8190 | 0.7052 | 0.8190 | 0.9050 |
250
+ | No log | 3.7905 | 398 | 0.7703 | 0.7159 | 0.7703 | 0.8777 |
251
+ | No log | 3.8095 | 400 | 0.6076 | 0.7955 | 0.6076 | 0.7795 |
252
+ | No log | 3.8286 | 402 | 0.5383 | 0.8075 | 0.5383 | 0.7337 |
253
+ | No log | 3.8476 | 404 | 0.5664 | 0.8158 | 0.5664 | 0.7526 |
254
+ | No log | 3.8667 | 406 | 0.6323 | 0.7947 | 0.6323 | 0.7952 |
255
+ | No log | 3.8857 | 408 | 0.7062 | 0.6803 | 0.7062 | 0.8404 |
256
+ | No log | 3.9048 | 410 | 0.7800 | 0.6708 | 0.7800 | 0.8832 |
257
+ | No log | 3.9238 | 412 | 0.7652 | 0.7052 | 0.7652 | 0.8748 |
258
+ | No log | 3.9429 | 414 | 0.7030 | 0.7284 | 0.7030 | 0.8385 |
259
+ | No log | 3.9619 | 416 | 0.7322 | 0.6573 | 0.7322 | 0.8557 |
260
+ | No log | 3.9810 | 418 | 0.7349 | 0.6569 | 0.7349 | 0.8573 |
261
+ | No log | 4.0 | 420 | 0.7013 | 0.7338 | 0.7013 | 0.8374 |
262
+ | No log | 4.0190 | 422 | 0.7515 | 0.7111 | 0.7515 | 0.8669 |
263
+ | No log | 4.0381 | 424 | 0.8635 | 0.6154 | 0.8635 | 0.9293 |
264
+ | No log | 4.0571 | 426 | 0.9056 | 0.6107 | 0.9056 | 0.9516 |
265
+ | No log | 4.0762 | 428 | 0.8175 | 0.6418 | 0.8175 | 0.9042 |
266
+ | No log | 4.0952 | 430 | 0.7210 | 0.7059 | 0.7210 | 0.8491 |
267
+ | No log | 4.1143 | 432 | 0.6674 | 0.7606 | 0.6674 | 0.8169 |
268
+ | No log | 4.1333 | 434 | 0.6269 | 0.7632 | 0.6269 | 0.7918 |
269
+ | No log | 4.1524 | 436 | 0.7054 | 0.7470 | 0.7054 | 0.8399 |
270
+ | No log | 4.1714 | 438 | 0.8457 | 0.7045 | 0.8457 | 0.9196 |
271
+ | No log | 4.1905 | 440 | 0.8643 | 0.6936 | 0.8643 | 0.9297 |
272
+ | No log | 4.2095 | 442 | 0.7451 | 0.7170 | 0.7451 | 0.8632 |
273
+ | No log | 4.2286 | 444 | 0.6519 | 0.7552 | 0.6519 | 0.8074 |
274
+ | No log | 4.2476 | 446 | 0.6529 | 0.7429 | 0.6529 | 0.8080 |
275
+ | No log | 4.2667 | 448 | 0.6996 | 0.6897 | 0.6996 | 0.8364 |
276
+ | No log | 4.2857 | 450 | 0.8656 | 0.6708 | 0.8656 | 0.9304 |
277
+ | No log | 4.3048 | 452 | 0.9727 | 0.6667 | 0.9727 | 0.9863 |
278
+ | No log | 4.3238 | 454 | 0.8830 | 0.6897 | 0.8830 | 0.9397 |
279
+ | No log | 4.3429 | 456 | 0.6980 | 0.7251 | 0.6980 | 0.8355 |
280
+ | No log | 4.3619 | 458 | 0.6019 | 0.7922 | 0.6019 | 0.7759 |
281
+ | No log | 4.3810 | 460 | 0.6335 | 0.7619 | 0.6335 | 0.7959 |
282
+ | No log | 4.4 | 462 | 0.7198 | 0.6620 | 0.7198 | 0.8484 |
283
+ | No log | 4.4190 | 464 | 0.8223 | 0.6575 | 0.8223 | 0.9068 |
284
+ | No log | 4.4381 | 466 | 0.8710 | 0.6901 | 0.8710 | 0.9333 |
285
+ | No log | 4.4571 | 468 | 0.7842 | 0.7066 | 0.7842 | 0.8856 |
286
+ | No log | 4.4762 | 470 | 0.6315 | 0.7632 | 0.6315 | 0.7947 |
287
+ | No log | 4.4952 | 472 | 0.5915 | 0.7413 | 0.5915 | 0.7691 |
288
+ | No log | 4.5143 | 474 | 0.5864 | 0.7536 | 0.5864 | 0.7657 |
289
+ | No log | 4.5333 | 476 | 0.5953 | 0.7536 | 0.5953 | 0.7715 |
290
+ | No log | 4.5524 | 478 | 0.5925 | 0.75 | 0.5925 | 0.7698 |
291
+ | No log | 4.5714 | 480 | 0.7016 | 0.7284 | 0.7016 | 0.8376 |
292
+ | No log | 4.5905 | 482 | 0.7668 | 0.7262 | 0.7668 | 0.8757 |
293
+ | No log | 4.6095 | 484 | 0.6970 | 0.7284 | 0.6970 | 0.8349 |
294
+ | No log | 4.6286 | 486 | 0.5920 | 0.7671 | 0.5920 | 0.7694 |
295
+ | No log | 4.6476 | 488 | 0.5912 | 0.7571 | 0.5912 | 0.7689 |
296
+ | No log | 4.6667 | 490 | 0.6231 | 0.7606 | 0.6231 | 0.7894 |
297
+ | No log | 4.6857 | 492 | 0.6429 | 0.7606 | 0.6429 | 0.8018 |
298
+ | No log | 4.7048 | 494 | 0.6700 | 0.7376 | 0.6700 | 0.8185 |
299
+ | No log | 4.7238 | 496 | 0.7438 | 0.7050 | 0.7438 | 0.8625 |
300
+ | No log | 4.7429 | 498 | 0.7963 | 0.6715 | 0.7963 | 0.8924 |
301
+ | 0.4394 | 4.7619 | 500 | 0.7589 | 0.7050 | 0.7589 | 0.8712 |
302
+ | 0.4394 | 4.7810 | 502 | 0.6613 | 0.7391 | 0.6613 | 0.8132 |
303
+ | 0.4394 | 4.8 | 504 | 0.6204 | 0.7606 | 0.6204 | 0.7876 |
304
+ | 0.4394 | 4.8190 | 506 | 0.6510 | 0.7517 | 0.6510 | 0.8069 |
305
+ | 0.4394 | 4.8381 | 508 | 0.8332 | 0.6909 | 0.8332 | 0.9128 |
306
+ | 0.4394 | 4.8571 | 510 | 0.9099 | 0.7018 | 0.9099 | 0.9539 |
307
+ | 0.4394 | 4.8762 | 512 | 0.8080 | 0.7073 | 0.8080 | 0.8989 |
308
+ | 0.4394 | 4.8952 | 514 | 0.6414 | 0.7682 | 0.6414 | 0.8009 |
309
+ | 0.4394 | 4.9143 | 516 | 0.6112 | 0.7755 | 0.6112 | 0.7818 |
310
+ | 0.4394 | 4.9333 | 518 | 0.6284 | 0.7945 | 0.6284 | 0.7927 |
311
+ | 0.4394 | 4.9524 | 520 | 0.6639 | 0.7536 | 0.6639 | 0.8148 |
312
+ | 0.4394 | 4.9714 | 522 | 0.6816 | 0.6767 | 0.6816 | 0.8256 |
313
+ | 0.4394 | 4.9905 | 524 | 0.6757 | 0.7083 | 0.6757 | 0.8220 |
314
+ | 0.4394 | 5.0095 | 526 | 0.6646 | 0.7027 | 0.6646 | 0.8152 |
315
+ | 0.4394 | 5.0286 | 528 | 0.6667 | 0.7647 | 0.6667 | 0.8165 |
316
+ | 0.4394 | 5.0476 | 530 | 0.6703 | 0.7665 | 0.6703 | 0.8187 |
317
+ | 0.4394 | 5.0667 | 532 | 0.7150 | 0.6939 | 0.7150 | 0.8456 |
318
+ | 0.4394 | 5.0857 | 534 | 0.7512 | 0.6806 | 0.7512 | 0.8667 |
319
+ | 0.4394 | 5.1048 | 536 | 0.7374 | 0.6866 | 0.7374 | 0.8587 |
320
+ | 0.4394 | 5.1238 | 538 | 0.6841 | 0.7482 | 0.6841 | 0.8271 |
321
+ | 0.4394 | 5.1429 | 540 | 0.6228 | 0.7376 | 0.6228 | 0.7892 |
322
+ | 0.4394 | 5.1619 | 542 | 0.5970 | 0.7571 | 0.5970 | 0.7727 |
323
+ | 0.4394 | 5.1810 | 544 | 0.6386 | 0.7413 | 0.6386 | 0.7991 |
324
+ | 0.4394 | 5.2 | 546 | 0.7615 | 0.6528 | 0.7615 | 0.8726 |
325
+ | 0.4394 | 5.2190 | 548 | 0.8097 | 0.6875 | 0.8097 | 0.8999 |
326
+ | 0.4394 | 5.2381 | 550 | 0.7129 | 0.6842 | 0.7129 | 0.8444 |
327
+ | 0.4394 | 5.2571 | 552 | 0.6130 | 0.7429 | 0.6130 | 0.7829 |
328
+ | 0.4394 | 5.2762 | 554 | 0.6435 | 0.7445 | 0.6435 | 0.8022 |
329
+ | 0.4394 | 5.2952 | 556 | 0.6872 | 0.7007 | 0.6872 | 0.8290 |
330
+ | 0.4394 | 5.3143 | 558 | 0.7784 | 0.6714 | 0.7784 | 0.8823 |
331
+ | 0.4394 | 5.3333 | 560 | 0.8203 | 0.6383 | 0.8203 | 0.9057 |
332
+ | 0.4394 | 5.3524 | 562 | 0.8303 | 0.6383 | 0.8303 | 0.9112 |
333
+ | 0.4394 | 5.3714 | 564 | 0.9146 | 0.6056 | 0.9146 | 0.9563 |
334
+
335
+
336
+ ### Framework versions
337
+
338
+ - Transformers 4.44.2
339
+ - Pytorch 2.4.0+cu118
340
+ - Datasets 2.21.0
341
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0052896093eab8a761e7d6ebc0006bcea92fec9dfe34ae437e433492ab417b81
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b47006f7042872fb2f003842300b991d16a28f77112812fffc8b64931d95e9f3
3
+ size 5304