MayBashendy commited on
Commit
cdb9684
·
verified ·
1 Parent(s): caadd4a

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +315 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k12_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k12_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6173
19
+ - Qwk: 0.7260
20
+ - Mse: 0.6173
21
+ - Rmse: 0.7857
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.0222 | 2 | 7.2624 | 0.0219 | 7.2624 | 2.6949 |
53
+ | No log | 0.0444 | 4 | 4.7398 | 0.0543 | 4.7398 | 2.1771 |
54
+ | No log | 0.0667 | 6 | 2.8761 | 0.0732 | 2.8761 | 1.6959 |
55
+ | No log | 0.0889 | 8 | 2.3242 | 0.0952 | 2.3242 | 1.5245 |
56
+ | No log | 0.1111 | 10 | 1.9969 | 0.2154 | 1.9969 | 1.4131 |
57
+ | No log | 0.1333 | 12 | 1.4286 | 0.2430 | 1.4286 | 1.1952 |
58
+ | No log | 0.1556 | 14 | 1.3395 | 0.2883 | 1.3395 | 1.1574 |
59
+ | No log | 0.1778 | 16 | 1.5975 | 0.2243 | 1.5975 | 1.2639 |
60
+ | No log | 0.2 | 18 | 1.7762 | 0.0893 | 1.7762 | 1.3328 |
61
+ | No log | 0.2222 | 20 | 1.5454 | 0.2703 | 1.5454 | 1.2431 |
62
+ | No log | 0.2444 | 22 | 1.2929 | 0.2857 | 1.2929 | 1.1371 |
63
+ | No log | 0.2667 | 24 | 1.5764 | 0.3582 | 1.5764 | 1.2555 |
64
+ | No log | 0.2889 | 26 | 1.7510 | 0.3404 | 1.7510 | 1.3233 |
65
+ | No log | 0.3111 | 28 | 2.1623 | 0.2162 | 2.1623 | 1.4705 |
66
+ | No log | 0.3333 | 30 | 1.6836 | 0.3741 | 1.6836 | 1.2975 |
67
+ | No log | 0.3556 | 32 | 1.1744 | 0.3833 | 1.1744 | 1.0837 |
68
+ | No log | 0.3778 | 34 | 1.1673 | 0.3214 | 1.1673 | 1.0804 |
69
+ | No log | 0.4 | 36 | 1.0594 | 0.3793 | 1.0594 | 1.0293 |
70
+ | No log | 0.4222 | 38 | 0.9748 | 0.5124 | 0.9748 | 0.9873 |
71
+ | No log | 0.4444 | 40 | 0.9613 | 0.5238 | 0.9613 | 0.9804 |
72
+ | No log | 0.4667 | 42 | 1.0245 | 0.5630 | 1.0245 | 1.0122 |
73
+ | No log | 0.4889 | 44 | 0.9542 | 0.5630 | 0.9542 | 0.9768 |
74
+ | No log | 0.5111 | 46 | 0.8967 | 0.5522 | 0.8967 | 0.9469 |
75
+ | No log | 0.5333 | 48 | 0.8702 | 0.6131 | 0.8702 | 0.9328 |
76
+ | No log | 0.5556 | 50 | 0.8310 | 0.6620 | 0.8310 | 0.9116 |
77
+ | No log | 0.5778 | 52 | 0.8709 | 0.6383 | 0.8709 | 0.9332 |
78
+ | No log | 0.6 | 54 | 0.8868 | 0.6712 | 0.8868 | 0.9417 |
79
+ | No log | 0.6222 | 56 | 0.8083 | 0.6986 | 0.8083 | 0.8991 |
80
+ | No log | 0.6444 | 58 | 0.8564 | 0.6887 | 0.8564 | 0.9254 |
81
+ | No log | 0.6667 | 60 | 0.8735 | 0.6803 | 0.8735 | 0.9346 |
82
+ | No log | 0.6889 | 62 | 0.9220 | 0.6803 | 0.9220 | 0.9602 |
83
+ | No log | 0.7111 | 64 | 0.9508 | 0.6323 | 0.9508 | 0.9751 |
84
+ | No log | 0.7333 | 66 | 0.8882 | 0.6486 | 0.8882 | 0.9425 |
85
+ | No log | 0.7556 | 68 | 1.1405 | 0.5526 | 1.1405 | 1.0679 |
86
+ | No log | 0.7778 | 70 | 1.5102 | 0.4737 | 1.5102 | 1.2289 |
87
+ | No log | 0.8 | 72 | 1.3329 | 0.4203 | 1.3329 | 1.1545 |
88
+ | No log | 0.8222 | 74 | 0.8832 | 0.6849 | 0.8832 | 0.9398 |
89
+ | No log | 0.8444 | 76 | 0.8065 | 0.7075 | 0.8065 | 0.8981 |
90
+ | No log | 0.8667 | 78 | 0.8231 | 0.7075 | 0.8231 | 0.9072 |
91
+ | No log | 0.8889 | 80 | 0.7361 | 0.6944 | 0.7361 | 0.8579 |
92
+ | No log | 0.9111 | 82 | 0.7535 | 0.7211 | 0.7535 | 0.8681 |
93
+ | No log | 0.9333 | 84 | 1.0202 | 0.6622 | 1.0202 | 1.0101 |
94
+ | No log | 0.9556 | 86 | 0.9464 | 0.6757 | 0.9464 | 0.9728 |
95
+ | No log | 0.9778 | 88 | 0.7653 | 0.7368 | 0.7653 | 0.8748 |
96
+ | No log | 1.0 | 90 | 0.7603 | 0.7260 | 0.7603 | 0.8719 |
97
+ | No log | 1.0222 | 92 | 0.9302 | 0.6571 | 0.9302 | 0.9645 |
98
+ | No log | 1.0444 | 94 | 0.8352 | 0.6711 | 0.8352 | 0.9139 |
99
+ | No log | 1.0667 | 96 | 0.7305 | 0.75 | 0.7305 | 0.8547 |
100
+ | No log | 1.0889 | 98 | 0.7193 | 0.7702 | 0.7193 | 0.8481 |
101
+ | No log | 1.1111 | 100 | 0.7922 | 0.7375 | 0.7922 | 0.8901 |
102
+ | No log | 1.1333 | 102 | 0.8129 | 0.7143 | 0.8129 | 0.9016 |
103
+ | No log | 1.1556 | 104 | 0.6995 | 0.7133 | 0.6995 | 0.8364 |
104
+ | No log | 1.1778 | 106 | 0.6944 | 0.7172 | 0.6944 | 0.8333 |
105
+ | No log | 1.2 | 108 | 0.8171 | 0.7470 | 0.8171 | 0.9039 |
106
+ | No log | 1.2222 | 110 | 0.8385 | 0.7283 | 0.8385 | 0.9157 |
107
+ | No log | 1.2444 | 112 | 0.7787 | 0.7176 | 0.7787 | 0.8825 |
108
+ | No log | 1.2667 | 114 | 0.7250 | 0.7 | 0.7250 | 0.8515 |
109
+ | No log | 1.2889 | 116 | 0.6743 | 0.7879 | 0.6743 | 0.8211 |
110
+ | No log | 1.3111 | 118 | 0.6613 | 0.7857 | 0.6613 | 0.8132 |
111
+ | No log | 1.3333 | 120 | 0.6886 | 0.7647 | 0.6886 | 0.8298 |
112
+ | No log | 1.3556 | 122 | 0.6933 | 0.7456 | 0.6933 | 0.8326 |
113
+ | No log | 1.3778 | 124 | 0.7089 | 0.7771 | 0.7089 | 0.8420 |
114
+ | No log | 1.4 | 126 | 0.6595 | 0.8166 | 0.6595 | 0.8121 |
115
+ | No log | 1.4222 | 128 | 0.9806 | 0.6784 | 0.9806 | 0.9903 |
116
+ | No log | 1.4444 | 130 | 1.2395 | 0.5896 | 1.2395 | 1.1133 |
117
+ | No log | 1.4667 | 132 | 1.1813 | 0.6076 | 1.1813 | 1.0869 |
118
+ | No log | 1.4889 | 134 | 0.9423 | 0.6761 | 0.9423 | 0.9707 |
119
+ | No log | 1.5111 | 136 | 0.8261 | 0.6475 | 0.8261 | 0.9089 |
120
+ | No log | 1.5333 | 138 | 0.7595 | 0.7083 | 0.7595 | 0.8715 |
121
+ | No log | 1.5556 | 140 | 0.7291 | 0.7172 | 0.7291 | 0.8539 |
122
+ | No log | 1.5778 | 142 | 0.7345 | 0.7785 | 0.7345 | 0.8570 |
123
+ | No log | 1.6 | 144 | 0.8410 | 0.7152 | 0.8410 | 0.9170 |
124
+ | No log | 1.6222 | 146 | 0.9274 | 0.6757 | 0.9274 | 0.9630 |
125
+ | No log | 1.6444 | 148 | 0.8409 | 0.6757 | 0.8409 | 0.9170 |
126
+ | No log | 1.6667 | 150 | 0.6592 | 0.7639 | 0.6592 | 0.8119 |
127
+ | No log | 1.6889 | 152 | 0.5849 | 0.7484 | 0.5849 | 0.7648 |
128
+ | No log | 1.7111 | 154 | 0.5685 | 0.7826 | 0.5685 | 0.7540 |
129
+ | No log | 1.7333 | 156 | 0.5206 | 0.8409 | 0.5206 | 0.7215 |
130
+ | No log | 1.7556 | 158 | 0.5118 | 0.8466 | 0.5118 | 0.7154 |
131
+ | No log | 1.7778 | 160 | 0.5119 | 0.8306 | 0.5119 | 0.7155 |
132
+ | No log | 1.8 | 162 | 0.5769 | 0.8432 | 0.5769 | 0.7595 |
133
+ | No log | 1.8222 | 164 | 0.5484 | 0.7904 | 0.5484 | 0.7405 |
134
+ | No log | 1.8444 | 166 | 0.6217 | 0.8050 | 0.6217 | 0.7885 |
135
+ | No log | 1.8667 | 168 | 0.6661 | 0.7871 | 0.6661 | 0.8161 |
136
+ | No log | 1.8889 | 170 | 0.7173 | 0.7550 | 0.7173 | 0.8470 |
137
+ | No log | 1.9111 | 172 | 0.7976 | 0.7083 | 0.7976 | 0.8931 |
138
+ | No log | 1.9333 | 174 | 0.9803 | 0.6846 | 0.9803 | 0.9901 |
139
+ | No log | 1.9556 | 176 | 1.0944 | 0.5806 | 1.0944 | 1.0461 |
140
+ | No log | 1.9778 | 178 | 1.0164 | 0.6144 | 1.0164 | 1.0081 |
141
+ | No log | 2.0 | 180 | 0.8587 | 0.7114 | 0.8587 | 0.9267 |
142
+ | No log | 2.0222 | 182 | 0.6971 | 0.7368 | 0.6971 | 0.8349 |
143
+ | No log | 2.0444 | 184 | 0.6072 | 0.7871 | 0.6072 | 0.7792 |
144
+ | No log | 2.0667 | 186 | 0.6111 | 0.7792 | 0.6111 | 0.7817 |
145
+ | No log | 2.0889 | 188 | 0.6450 | 0.72 | 0.6450 | 0.8031 |
146
+ | No log | 2.1111 | 190 | 0.7101 | 0.7333 | 0.7101 | 0.8427 |
147
+ | No log | 2.1333 | 192 | 0.7961 | 0.7421 | 0.7961 | 0.8923 |
148
+ | No log | 2.1556 | 194 | 0.7637 | 0.7436 | 0.7637 | 0.8739 |
149
+ | No log | 2.1778 | 196 | 0.7167 | 0.7320 | 0.7167 | 0.8466 |
150
+ | No log | 2.2 | 198 | 0.7633 | 0.7436 | 0.7633 | 0.8737 |
151
+ | No log | 2.2222 | 200 | 0.8554 | 0.7097 | 0.8554 | 0.9249 |
152
+ | No log | 2.2444 | 202 | 0.8010 | 0.7097 | 0.8010 | 0.8950 |
153
+ | No log | 2.2667 | 204 | 0.7448 | 0.7059 | 0.7448 | 0.8630 |
154
+ | No log | 2.2889 | 206 | 0.6726 | 0.7785 | 0.6726 | 0.8201 |
155
+ | No log | 2.3111 | 208 | 0.6818 | 0.7550 | 0.6818 | 0.8257 |
156
+ | No log | 2.3333 | 210 | 0.7865 | 0.7051 | 0.7865 | 0.8869 |
157
+ | No log | 2.3556 | 212 | 0.8267 | 0.7125 | 0.8267 | 0.9092 |
158
+ | No log | 2.3778 | 214 | 0.7408 | 0.7211 | 0.7408 | 0.8607 |
159
+ | No log | 2.4 | 216 | 0.7033 | 0.7211 | 0.7033 | 0.8386 |
160
+ | No log | 2.4222 | 218 | 0.6876 | 0.7211 | 0.6876 | 0.8292 |
161
+ | No log | 2.4444 | 220 | 0.6608 | 0.7432 | 0.6608 | 0.8129 |
162
+ | No log | 2.4667 | 222 | 0.6511 | 0.7320 | 0.6511 | 0.8069 |
163
+ | No log | 2.4889 | 224 | 0.6117 | 0.7711 | 0.6117 | 0.7821 |
164
+ | No log | 2.5111 | 226 | 0.5687 | 0.8199 | 0.5687 | 0.7541 |
165
+ | No log | 2.5333 | 228 | 0.5762 | 0.8125 | 0.5762 | 0.7591 |
166
+ | No log | 2.5556 | 230 | 0.6182 | 0.8054 | 0.6182 | 0.7863 |
167
+ | No log | 2.5778 | 232 | 0.6600 | 0.7838 | 0.6600 | 0.8124 |
168
+ | No log | 2.6 | 234 | 0.6508 | 0.7582 | 0.6508 | 0.8067 |
169
+ | No log | 2.6222 | 236 | 0.5808 | 0.7871 | 0.5808 | 0.7621 |
170
+ | No log | 2.6444 | 238 | 0.5343 | 0.8199 | 0.5343 | 0.7309 |
171
+ | No log | 2.6667 | 240 | 0.5178 | 0.8199 | 0.5178 | 0.7196 |
172
+ | No log | 2.6889 | 242 | 0.6239 | 0.7957 | 0.6239 | 0.7899 |
173
+ | No log | 2.7111 | 244 | 0.7466 | 0.7784 | 0.7466 | 0.8640 |
174
+ | No log | 2.7333 | 246 | 0.6549 | 0.7784 | 0.6549 | 0.8093 |
175
+ | No log | 2.7556 | 248 | 0.5389 | 0.8121 | 0.5389 | 0.7341 |
176
+ | No log | 2.7778 | 250 | 0.5386 | 0.7975 | 0.5386 | 0.7339 |
177
+ | No log | 2.8 | 252 | 0.5477 | 0.8024 | 0.5477 | 0.7401 |
178
+ | No log | 2.8222 | 254 | 0.6508 | 0.7665 | 0.6508 | 0.8067 |
179
+ | No log | 2.8444 | 256 | 0.7856 | 0.7030 | 0.7856 | 0.8863 |
180
+ | No log | 2.8667 | 258 | 0.7296 | 0.7485 | 0.7296 | 0.8541 |
181
+ | No log | 2.8889 | 260 | 0.6381 | 0.7632 | 0.6381 | 0.7988 |
182
+ | No log | 2.9111 | 262 | 0.5975 | 0.7651 | 0.5975 | 0.7730 |
183
+ | No log | 2.9333 | 264 | 0.5636 | 0.7843 | 0.5636 | 0.7507 |
184
+ | No log | 2.9556 | 266 | 0.5521 | 0.8025 | 0.5521 | 0.7431 |
185
+ | No log | 2.9778 | 268 | 0.5662 | 0.7975 | 0.5662 | 0.7525 |
186
+ | No log | 3.0 | 270 | 0.5702 | 0.8140 | 0.5702 | 0.7551 |
187
+ | No log | 3.0222 | 272 | 0.5860 | 0.8121 | 0.5860 | 0.7655 |
188
+ | No log | 3.0444 | 274 | 0.5652 | 0.8 | 0.5652 | 0.7518 |
189
+ | No log | 3.0667 | 276 | 0.5478 | 0.7843 | 0.5478 | 0.7401 |
190
+ | No log | 3.0889 | 278 | 0.5594 | 0.7733 | 0.5594 | 0.7479 |
191
+ | No log | 3.1111 | 280 | 0.5759 | 0.7619 | 0.5759 | 0.7589 |
192
+ | No log | 3.1333 | 282 | 0.5981 | 0.7671 | 0.5981 | 0.7734 |
193
+ | No log | 3.1556 | 284 | 0.6472 | 0.7517 | 0.6472 | 0.8045 |
194
+ | No log | 3.1778 | 286 | 0.7560 | 0.75 | 0.7560 | 0.8695 |
195
+ | No log | 3.2 | 288 | 0.7286 | 0.7753 | 0.7286 | 0.8536 |
196
+ | No log | 3.2222 | 290 | 0.5843 | 0.8242 | 0.5843 | 0.7644 |
197
+ | No log | 3.2444 | 292 | 0.5556 | 0.7875 | 0.5556 | 0.7454 |
198
+ | No log | 3.2667 | 294 | 0.5819 | 0.7925 | 0.5819 | 0.7628 |
199
+ | No log | 3.2889 | 296 | 0.6621 | 0.7582 | 0.6621 | 0.8137 |
200
+ | No log | 3.3111 | 298 | 0.7140 | 0.7067 | 0.7140 | 0.8450 |
201
+ | No log | 3.3333 | 300 | 0.7657 | 0.7211 | 0.7657 | 0.8750 |
202
+ | No log | 3.3556 | 302 | 0.7675 | 0.7083 | 0.7675 | 0.8761 |
203
+ | No log | 3.3778 | 304 | 0.7604 | 0.7248 | 0.7604 | 0.8720 |
204
+ | No log | 3.4 | 306 | 0.7135 | 0.7436 | 0.7135 | 0.8447 |
205
+ | No log | 3.4222 | 308 | 0.7100 | 0.775 | 0.7100 | 0.8426 |
206
+ | No log | 3.4444 | 310 | 0.6417 | 0.7925 | 0.6417 | 0.8010 |
207
+ | No log | 3.4667 | 312 | 0.5774 | 0.7949 | 0.5774 | 0.7599 |
208
+ | No log | 3.4889 | 314 | 0.6050 | 0.7692 | 0.6050 | 0.7778 |
209
+ | No log | 3.5111 | 316 | 0.6024 | 0.7871 | 0.6024 | 0.7761 |
210
+ | No log | 3.5333 | 318 | 0.5771 | 0.7947 | 0.5771 | 0.7597 |
211
+ | No log | 3.5556 | 320 | 0.5543 | 0.7895 | 0.5543 | 0.7445 |
212
+ | No log | 3.5778 | 322 | 0.5335 | 0.8025 | 0.5335 | 0.7304 |
213
+ | No log | 3.6 | 324 | 0.5302 | 0.7975 | 0.5302 | 0.7281 |
214
+ | No log | 3.6222 | 326 | 0.5439 | 0.8025 | 0.5439 | 0.7375 |
215
+ | No log | 3.6444 | 328 | 0.5975 | 0.7799 | 0.5975 | 0.7730 |
216
+ | No log | 3.6667 | 330 | 0.7568 | 0.7317 | 0.7568 | 0.8699 |
217
+ | No log | 3.6889 | 332 | 0.7934 | 0.7037 | 0.7934 | 0.8907 |
218
+ | No log | 3.7111 | 334 | 0.7354 | 0.7215 | 0.7354 | 0.8575 |
219
+ | No log | 3.7333 | 336 | 0.6950 | 0.7123 | 0.6950 | 0.8336 |
220
+ | No log | 3.7556 | 338 | 0.6652 | 0.7568 | 0.6652 | 0.8156 |
221
+ | No log | 3.7778 | 340 | 0.6494 | 0.7785 | 0.6494 | 0.8059 |
222
+ | No log | 3.8 | 342 | 0.6475 | 0.7682 | 0.6475 | 0.8047 |
223
+ | No log | 3.8222 | 344 | 0.6096 | 0.7895 | 0.6096 | 0.7807 |
224
+ | No log | 3.8444 | 346 | 0.5969 | 0.7722 | 0.5969 | 0.7726 |
225
+ | No log | 3.8667 | 348 | 0.5646 | 0.7952 | 0.5646 | 0.7514 |
226
+ | No log | 3.8889 | 350 | 0.5350 | 0.8132 | 0.5350 | 0.7314 |
227
+ | No log | 3.9111 | 352 | 0.5285 | 0.8242 | 0.5285 | 0.7270 |
228
+ | No log | 3.9333 | 354 | 0.5314 | 0.8208 | 0.5314 | 0.7289 |
229
+ | No log | 3.9556 | 356 | 0.5504 | 0.8208 | 0.5504 | 0.7419 |
230
+ | No log | 3.9778 | 358 | 0.5841 | 0.8148 | 0.5841 | 0.7643 |
231
+ | No log | 4.0 | 360 | 0.6387 | 0.7755 | 0.6387 | 0.7992 |
232
+ | No log | 4.0222 | 362 | 0.6940 | 0.7432 | 0.6940 | 0.8330 |
233
+ | No log | 4.0444 | 364 | 0.6814 | 0.7517 | 0.6814 | 0.8255 |
234
+ | No log | 4.0667 | 366 | 0.6320 | 0.7639 | 0.6320 | 0.7950 |
235
+ | No log | 4.0889 | 368 | 0.6044 | 0.7778 | 0.6044 | 0.7775 |
236
+ | No log | 4.1111 | 370 | 0.5482 | 0.8075 | 0.5482 | 0.7404 |
237
+ | No log | 4.1333 | 372 | 0.5389 | 0.7811 | 0.5389 | 0.7341 |
238
+ | No log | 4.1556 | 374 | 0.6219 | 0.8 | 0.6219 | 0.7886 |
239
+ | No log | 4.1778 | 376 | 0.6480 | 0.7978 | 0.6480 | 0.8050 |
240
+ | No log | 4.2 | 378 | 0.5938 | 0.7882 | 0.5938 | 0.7706 |
241
+ | No log | 4.2222 | 380 | 0.5884 | 0.7467 | 0.5884 | 0.7671 |
242
+ | No log | 4.2444 | 382 | 0.6221 | 0.7606 | 0.6221 | 0.7887 |
243
+ | No log | 4.2667 | 384 | 0.6581 | 0.7413 | 0.6581 | 0.8112 |
244
+ | No log | 4.2889 | 386 | 0.6661 | 0.7172 | 0.6661 | 0.8162 |
245
+ | No log | 4.3111 | 388 | 0.6185 | 0.7465 | 0.6185 | 0.7864 |
246
+ | No log | 4.3333 | 390 | 0.5820 | 0.7755 | 0.5820 | 0.7629 |
247
+ | No log | 4.3556 | 392 | 0.5812 | 0.7815 | 0.5812 | 0.7624 |
248
+ | No log | 4.3778 | 394 | 0.5578 | 0.8 | 0.5578 | 0.7469 |
249
+ | No log | 4.4 | 396 | 0.5572 | 0.8025 | 0.5572 | 0.7465 |
250
+ | No log | 4.4222 | 398 | 0.6486 | 0.7545 | 0.6486 | 0.8054 |
251
+ | No log | 4.4444 | 400 | 0.7744 | 0.7725 | 0.7744 | 0.8800 |
252
+ | No log | 4.4667 | 402 | 0.7493 | 0.7755 | 0.7493 | 0.8656 |
253
+ | No log | 4.4889 | 404 | 0.5712 | 0.7929 | 0.5712 | 0.7558 |
254
+ | No log | 4.5111 | 406 | 0.4740 | 0.8395 | 0.4740 | 0.6884 |
255
+ | No log | 4.5333 | 408 | 0.4674 | 0.8293 | 0.4674 | 0.6836 |
256
+ | No log | 4.5556 | 410 | 0.4764 | 0.8302 | 0.4764 | 0.6902 |
257
+ | No log | 4.5778 | 412 | 0.4930 | 0.8302 | 0.4930 | 0.7021 |
258
+ | No log | 4.6 | 414 | 0.5065 | 0.8199 | 0.5065 | 0.7117 |
259
+ | No log | 4.6222 | 416 | 0.5293 | 0.8050 | 0.5293 | 0.7275 |
260
+ | No log | 4.6444 | 418 | 0.5324 | 0.8125 | 0.5324 | 0.7296 |
261
+ | No log | 4.6667 | 420 | 0.5528 | 0.7925 | 0.5528 | 0.7435 |
262
+ | No log | 4.6889 | 422 | 0.5482 | 0.7875 | 0.5482 | 0.7404 |
263
+ | No log | 4.7111 | 424 | 0.5289 | 0.8098 | 0.5289 | 0.7273 |
264
+ | No log | 4.7333 | 426 | 0.5328 | 0.8144 | 0.5328 | 0.7299 |
265
+ | No log | 4.7556 | 428 | 0.5332 | 0.8193 | 0.5332 | 0.7302 |
266
+ | No log | 4.7778 | 430 | 0.5349 | 0.8098 | 0.5349 | 0.7314 |
267
+ | No log | 4.8 | 432 | 0.5603 | 0.8 | 0.5603 | 0.7486 |
268
+ | No log | 4.8222 | 434 | 0.5778 | 0.8025 | 0.5778 | 0.7601 |
269
+ | No log | 4.8444 | 436 | 0.5574 | 0.7949 | 0.5574 | 0.7466 |
270
+ | No log | 4.8667 | 438 | 0.5789 | 0.8125 | 0.5789 | 0.7608 |
271
+ | No log | 4.8889 | 440 | 0.5882 | 0.8199 | 0.5882 | 0.7669 |
272
+ | No log | 4.9111 | 442 | 0.5674 | 0.7975 | 0.5674 | 0.7532 |
273
+ | No log | 4.9333 | 444 | 0.5677 | 0.7922 | 0.5677 | 0.7534 |
274
+ | No log | 4.9556 | 446 | 0.6019 | 0.7297 | 0.6019 | 0.7758 |
275
+ | No log | 4.9778 | 448 | 0.5958 | 0.7347 | 0.5958 | 0.7719 |
276
+ | No log | 5.0 | 450 | 0.5951 | 0.7432 | 0.5951 | 0.7714 |
277
+ | No log | 5.0222 | 452 | 0.6146 | 0.7550 | 0.6146 | 0.7840 |
278
+ | No log | 5.0444 | 454 | 0.5848 | 0.7432 | 0.5848 | 0.7647 |
279
+ | No log | 5.0667 | 456 | 0.5423 | 0.7763 | 0.5423 | 0.7364 |
280
+ | No log | 5.0889 | 458 | 0.5328 | 0.8 | 0.5328 | 0.7300 |
281
+ | No log | 5.1111 | 460 | 0.5244 | 0.7922 | 0.5244 | 0.7241 |
282
+ | No log | 5.1333 | 462 | 0.5406 | 0.7871 | 0.5406 | 0.7353 |
283
+ | No log | 5.1556 | 464 | 0.5746 | 0.7550 | 0.5746 | 0.7580 |
284
+ | No log | 5.1778 | 466 | 0.6013 | 0.7432 | 0.6013 | 0.7754 |
285
+ | No log | 5.2 | 468 | 0.6313 | 0.7222 | 0.6313 | 0.7945 |
286
+ | No log | 5.2222 | 470 | 0.6886 | 0.7152 | 0.6886 | 0.8298 |
287
+ | No log | 5.2444 | 472 | 0.6994 | 0.7089 | 0.6994 | 0.8363 |
288
+ | No log | 5.2667 | 474 | 0.6543 | 0.7531 | 0.6543 | 0.8089 |
289
+ | No log | 5.2889 | 476 | 0.5718 | 0.7792 | 0.5718 | 0.7562 |
290
+ | No log | 5.3111 | 478 | 0.5183 | 0.8025 | 0.5183 | 0.7199 |
291
+ | No log | 5.3333 | 480 | 0.4942 | 0.8313 | 0.4942 | 0.7030 |
292
+ | No log | 5.3556 | 482 | 0.4847 | 0.8284 | 0.4847 | 0.6962 |
293
+ | No log | 5.3778 | 484 | 0.4990 | 0.8221 | 0.4990 | 0.7064 |
294
+ | No log | 5.4 | 486 | 0.5632 | 0.7975 | 0.5632 | 0.7505 |
295
+ | No log | 5.4222 | 488 | 0.5871 | 0.8025 | 0.5871 | 0.7662 |
296
+ | No log | 5.4444 | 490 | 0.5931 | 0.7922 | 0.5931 | 0.7701 |
297
+ | No log | 5.4667 | 492 | 0.5709 | 0.8077 | 0.5709 | 0.7556 |
298
+ | No log | 5.4889 | 494 | 0.5305 | 0.8125 | 0.5305 | 0.7284 |
299
+ | No log | 5.5111 | 496 | 0.5092 | 0.8075 | 0.5092 | 0.7135 |
300
+ | No log | 5.5333 | 498 | 0.5161 | 0.8075 | 0.5161 | 0.7184 |
301
+ | 0.4158 | 5.5556 | 500 | 0.5493 | 0.8075 | 0.5493 | 0.7412 |
302
+ | 0.4158 | 5.5778 | 502 | 0.5714 | 0.8228 | 0.5714 | 0.7559 |
303
+ | 0.4158 | 5.6 | 504 | 0.5910 | 0.7662 | 0.5910 | 0.7688 |
304
+ | 0.4158 | 5.6222 | 506 | 0.6224 | 0.7248 | 0.6224 | 0.7889 |
305
+ | 0.4158 | 5.6444 | 508 | 0.6607 | 0.7368 | 0.6607 | 0.8128 |
306
+ | 0.4158 | 5.6667 | 510 | 0.6526 | 0.7260 | 0.6526 | 0.8078 |
307
+ | 0.4158 | 5.6889 | 512 | 0.6173 | 0.7260 | 0.6173 | 0.7857 |
308
+
309
+
310
+ ### Framework versions
311
+
312
+ - Transformers 4.44.2
313
+ - Pytorch 2.4.0+cu118
314
+ - Datasets 2.21.0
315
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b533b845d56ce311069e291dbfa443b083f1b26ce2634aa2d1ac0f3c15a8a3e
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bfe54f4dc2d30ff12ae9286a62e3ea849b1a7ab61d99ab467b6cb187e3afc82
3
+ size 5304