MayBashendy commited on
Commit
ca6314d
·
verified ·
1 Parent(s): c0c1d9d

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +318 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k10_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k10_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.8610
19
+ - Qwk: 0.6619
20
+ - Mse: 0.8610
21
+ - Rmse: 0.9279
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.0267 | 2 | 6.8741 | 0.0242 | 6.8741 | 2.6219 |
53
+ | No log | 0.0533 | 4 | 4.4447 | 0.1205 | 4.4447 | 2.1082 |
54
+ | No log | 0.08 | 6 | 2.9239 | 0.0988 | 2.9239 | 1.7099 |
55
+ | No log | 0.1067 | 8 | 2.2647 | 0.1342 | 2.2647 | 1.5049 |
56
+ | No log | 0.1333 | 10 | 1.8034 | 0.3167 | 1.8034 | 1.3429 |
57
+ | No log | 0.16 | 12 | 1.6455 | 0.2000 | 1.6455 | 1.2828 |
58
+ | No log | 0.1867 | 14 | 1.6240 | 0.2430 | 1.6240 | 1.2744 |
59
+ | No log | 0.2133 | 16 | 1.5608 | 0.2430 | 1.5608 | 1.2493 |
60
+ | No log | 0.24 | 18 | 1.3631 | 0.3273 | 1.3631 | 1.1675 |
61
+ | No log | 0.2667 | 20 | 1.4066 | 0.4833 | 1.4066 | 1.1860 |
62
+ | No log | 0.2933 | 22 | 1.4600 | 0.4202 | 1.4600 | 1.2083 |
63
+ | No log | 0.32 | 24 | 1.2744 | 0.4874 | 1.2744 | 1.1289 |
64
+ | No log | 0.3467 | 26 | 1.1430 | 0.3717 | 1.1430 | 1.0691 |
65
+ | No log | 0.3733 | 28 | 1.3560 | 0.5496 | 1.3560 | 1.1645 |
66
+ | No log | 0.4 | 30 | 1.5789 | 0.3731 | 1.5789 | 1.2566 |
67
+ | No log | 0.4267 | 32 | 1.6589 | 0.3731 | 1.6589 | 1.2880 |
68
+ | No log | 0.4533 | 34 | 1.4425 | 0.3788 | 1.4425 | 1.2010 |
69
+ | No log | 0.48 | 36 | 1.1931 | 0.4706 | 1.1931 | 1.0923 |
70
+ | No log | 0.5067 | 38 | 1.1102 | 0.5167 | 1.1102 | 1.0537 |
71
+ | No log | 0.5333 | 40 | 1.1154 | 0.5 | 1.1154 | 1.0561 |
72
+ | No log | 0.56 | 42 | 1.0953 | 0.5556 | 1.0953 | 1.0466 |
73
+ | No log | 0.5867 | 44 | 1.3899 | 0.3363 | 1.3899 | 1.1790 |
74
+ | No log | 0.6133 | 46 | 1.4906 | 0.2385 | 1.4906 | 1.2209 |
75
+ | No log | 0.64 | 48 | 1.3064 | 0.3130 | 1.3064 | 1.1430 |
76
+ | No log | 0.6667 | 50 | 1.0549 | 0.5323 | 1.0549 | 1.0271 |
77
+ | No log | 0.6933 | 52 | 1.0217 | 0.5669 | 1.0217 | 1.0108 |
78
+ | No log | 0.72 | 54 | 1.0282 | 0.6466 | 1.0282 | 1.0140 |
79
+ | No log | 0.7467 | 56 | 1.2213 | 0.5507 | 1.2213 | 1.1051 |
80
+ | No log | 0.7733 | 58 | 1.3697 | 0.5306 | 1.3697 | 1.1703 |
81
+ | No log | 0.8 | 60 | 1.3558 | 0.4861 | 1.3558 | 1.1644 |
82
+ | No log | 0.8267 | 62 | 1.3191 | 0.5068 | 1.3191 | 1.1485 |
83
+ | No log | 0.8533 | 64 | 1.2220 | 0.575 | 1.2220 | 1.1055 |
84
+ | No log | 0.88 | 66 | 1.1871 | 0.65 | 1.1871 | 1.0895 |
85
+ | No log | 0.9067 | 68 | 1.1565 | 0.5860 | 1.1565 | 1.0754 |
86
+ | No log | 0.9333 | 70 | 1.1430 | 0.5949 | 1.1430 | 1.0691 |
87
+ | No log | 0.96 | 72 | 1.2064 | 0.6104 | 1.2064 | 1.0984 |
88
+ | No log | 0.9867 | 74 | 1.0976 | 0.6364 | 1.0976 | 1.0477 |
89
+ | No log | 1.0133 | 76 | 1.0378 | 0.6093 | 1.0378 | 1.0187 |
90
+ | No log | 1.04 | 78 | 1.0194 | 0.6133 | 1.0194 | 1.0097 |
91
+ | No log | 1.0667 | 80 | 1.0062 | 0.6528 | 1.0062 | 1.0031 |
92
+ | No log | 1.0933 | 82 | 1.0427 | 0.6027 | 1.0427 | 1.0211 |
93
+ | No log | 1.12 | 84 | 1.2466 | 0.5333 | 1.2466 | 1.1165 |
94
+ | No log | 1.1467 | 86 | 1.3467 | 0.5135 | 1.3467 | 1.1605 |
95
+ | No log | 1.1733 | 88 | 1.2426 | 0.5541 | 1.2426 | 1.1147 |
96
+ | No log | 1.2 | 90 | 1.1735 | 0.5517 | 1.1735 | 1.0833 |
97
+ | No log | 1.2267 | 92 | 1.2144 | 0.5467 | 1.2144 | 1.1020 |
98
+ | No log | 1.2533 | 94 | 1.2854 | 0.5921 | 1.2854 | 1.1338 |
99
+ | No log | 1.28 | 96 | 1.1206 | 0.5828 | 1.1206 | 1.0586 |
100
+ | No log | 1.3067 | 98 | 1.0282 | 0.6533 | 1.0282 | 1.0140 |
101
+ | No log | 1.3333 | 100 | 1.0217 | 0.6081 | 1.0217 | 1.0108 |
102
+ | No log | 1.3600 | 102 | 1.1092 | 0.56 | 1.1092 | 1.0532 |
103
+ | No log | 1.3867 | 104 | 1.1245 | 0.5563 | 1.1245 | 1.0604 |
104
+ | No log | 1.4133 | 106 | 1.0975 | 0.6456 | 1.0975 | 1.0476 |
105
+ | No log | 1.44 | 108 | 1.0963 | 0.6369 | 1.0963 | 1.0470 |
106
+ | No log | 1.4667 | 110 | 1.0973 | 0.6711 | 1.0973 | 1.0475 |
107
+ | No log | 1.4933 | 112 | 1.2042 | 0.5563 | 1.2042 | 1.0973 |
108
+ | No log | 1.52 | 114 | 1.2251 | 0.5405 | 1.2251 | 1.1068 |
109
+ | No log | 1.5467 | 116 | 1.1323 | 0.4928 | 1.1323 | 1.0641 |
110
+ | No log | 1.5733 | 118 | 1.0331 | 0.6015 | 1.0331 | 1.0164 |
111
+ | No log | 1.6 | 120 | 1.0456 | 0.5538 | 1.0456 | 1.0226 |
112
+ | No log | 1.6267 | 122 | 1.0191 | 0.6074 | 1.0191 | 1.0095 |
113
+ | No log | 1.6533 | 124 | 0.9872 | 0.6483 | 0.9872 | 0.9936 |
114
+ | No log | 1.6800 | 126 | 0.9630 | 0.6622 | 0.9630 | 0.9813 |
115
+ | No log | 1.7067 | 128 | 0.9826 | 0.6622 | 0.9826 | 0.9913 |
116
+ | No log | 1.7333 | 130 | 0.9697 | 0.6968 | 0.9697 | 0.9847 |
117
+ | No log | 1.76 | 132 | 1.0204 | 0.6708 | 1.0204 | 1.0101 |
118
+ | No log | 1.7867 | 134 | 1.0969 | 0.5860 | 1.0969 | 1.0473 |
119
+ | No log | 1.8133 | 136 | 1.1636 | 0.5290 | 1.1636 | 1.0787 |
120
+ | No log | 1.8400 | 138 | 1.0583 | 0.6241 | 1.0583 | 1.0287 |
121
+ | No log | 1.8667 | 140 | 1.0097 | 0.6434 | 1.0097 | 1.0048 |
122
+ | No log | 1.8933 | 142 | 1.0142 | 0.6040 | 1.0142 | 1.0071 |
123
+ | No log | 1.92 | 144 | 1.0161 | 0.6 | 1.0161 | 1.0080 |
124
+ | No log | 1.9467 | 146 | 1.0303 | 0.6111 | 1.0303 | 1.0151 |
125
+ | No log | 1.9733 | 148 | 1.0907 | 0.5714 | 1.0907 | 1.0444 |
126
+ | No log | 2.0 | 150 | 1.1810 | 0.6026 | 1.1810 | 1.0867 |
127
+ | No log | 2.0267 | 152 | 1.1206 | 0.6184 | 1.1206 | 1.0586 |
128
+ | No log | 2.0533 | 154 | 0.9845 | 0.6395 | 0.9845 | 0.9922 |
129
+ | No log | 2.08 | 156 | 0.8717 | 0.6803 | 0.8717 | 0.9337 |
130
+ | No log | 2.1067 | 158 | 0.7831 | 0.7172 | 0.7831 | 0.8849 |
131
+ | No log | 2.1333 | 160 | 0.7835 | 0.7483 | 0.7835 | 0.8852 |
132
+ | No log | 2.16 | 162 | 0.8327 | 0.7285 | 0.8327 | 0.9125 |
133
+ | No log | 2.1867 | 164 | 0.9683 | 0.6447 | 0.9683 | 0.9840 |
134
+ | No log | 2.2133 | 166 | 1.1341 | 0.6424 | 1.1341 | 1.0649 |
135
+ | No log | 2.24 | 168 | 1.0505 | 0.6225 | 1.0505 | 1.0249 |
136
+ | No log | 2.2667 | 170 | 0.9979 | 0.6980 | 0.9979 | 0.9989 |
137
+ | No log | 2.2933 | 172 | 1.1125 | 0.6154 | 1.1125 | 1.0548 |
138
+ | No log | 2.32 | 174 | 1.0772 | 0.6301 | 1.0772 | 1.0379 |
139
+ | No log | 2.3467 | 176 | 0.9361 | 0.7067 | 0.9361 | 0.9675 |
140
+ | No log | 2.3733 | 178 | 0.8536 | 0.7020 | 0.8536 | 0.9239 |
141
+ | No log | 2.4 | 180 | 0.9387 | 0.6714 | 0.9387 | 0.9689 |
142
+ | No log | 2.4267 | 182 | 1.1416 | 0.6452 | 1.1416 | 1.0684 |
143
+ | No log | 2.4533 | 184 | 1.3616 | 0.5896 | 1.3616 | 1.1669 |
144
+ | No log | 2.48 | 186 | 1.2598 | 0.5783 | 1.2598 | 1.1224 |
145
+ | No log | 2.5067 | 188 | 1.0225 | 0.5960 | 1.0225 | 1.0112 |
146
+ | No log | 2.5333 | 190 | 0.9066 | 0.6897 | 0.9066 | 0.9522 |
147
+ | No log | 2.56 | 192 | 0.9499 | 0.6620 | 0.9499 | 0.9746 |
148
+ | No log | 2.5867 | 194 | 0.9704 | 0.6901 | 0.9704 | 0.9851 |
149
+ | No log | 2.6133 | 196 | 1.0139 | 0.6 | 1.0139 | 1.0069 |
150
+ | No log | 2.64 | 198 | 1.1163 | 0.5752 | 1.1163 | 1.0566 |
151
+ | No log | 2.6667 | 200 | 1.1849 | 0.6347 | 1.1849 | 1.0886 |
152
+ | No log | 2.6933 | 202 | 1.0802 | 0.6860 | 1.0802 | 1.0393 |
153
+ | No log | 2.7200 | 204 | 0.9285 | 0.6846 | 0.9285 | 0.9636 |
154
+ | No log | 2.7467 | 206 | 0.8667 | 0.7067 | 0.8667 | 0.9310 |
155
+ | No log | 2.7733 | 208 | 0.8241 | 0.6944 | 0.8241 | 0.9078 |
156
+ | No log | 2.8 | 210 | 0.8402 | 0.6389 | 0.8402 | 0.9166 |
157
+ | No log | 2.8267 | 212 | 0.7094 | 0.7397 | 0.7094 | 0.8422 |
158
+ | No log | 2.8533 | 214 | 0.7496 | 0.7170 | 0.7496 | 0.8658 |
159
+ | No log | 2.88 | 216 | 0.8908 | 0.6533 | 0.8908 | 0.9438 |
160
+ | No log | 2.9067 | 218 | 0.9863 | 0.6338 | 0.9863 | 0.9931 |
161
+ | No log | 2.9333 | 220 | 0.9574 | 0.6269 | 0.9574 | 0.9784 |
162
+ | No log | 2.96 | 222 | 0.9293 | 0.6466 | 0.9293 | 0.9640 |
163
+ | No log | 2.9867 | 224 | 0.8087 | 0.6815 | 0.8087 | 0.8993 |
164
+ | No log | 3.0133 | 226 | 0.7484 | 0.7246 | 0.7484 | 0.8651 |
165
+ | No log | 3.04 | 228 | 0.8994 | 0.6713 | 0.8994 | 0.9484 |
166
+ | No log | 3.0667 | 230 | 1.1504 | 0.6104 | 1.1504 | 1.0726 |
167
+ | No log | 3.0933 | 232 | 1.3816 | 0.5698 | 1.3816 | 1.1754 |
168
+ | No log | 3.12 | 234 | 1.3033 | 0.5283 | 1.3033 | 1.1416 |
169
+ | No log | 3.1467 | 236 | 1.0382 | 0.6483 | 1.0382 | 1.0189 |
170
+ | No log | 3.1733 | 238 | 0.8090 | 0.6993 | 0.8090 | 0.8994 |
171
+ | No log | 3.2 | 240 | 0.7657 | 0.7172 | 0.7657 | 0.8751 |
172
+ | No log | 3.2267 | 242 | 0.7208 | 0.7403 | 0.7208 | 0.8490 |
173
+ | No log | 3.2533 | 244 | 0.6578 | 0.7595 | 0.6578 | 0.8110 |
174
+ | No log | 3.2800 | 246 | 0.6540 | 0.7875 | 0.6540 | 0.8087 |
175
+ | No log | 3.3067 | 248 | 0.6629 | 0.7722 | 0.6629 | 0.8142 |
176
+ | No log | 3.3333 | 250 | 0.6542 | 0.7771 | 0.6542 | 0.8088 |
177
+ | No log | 3.36 | 252 | 0.6886 | 0.7383 | 0.6886 | 0.8298 |
178
+ | No log | 3.3867 | 254 | 0.7713 | 0.7162 | 0.7713 | 0.8782 |
179
+ | No log | 3.4133 | 256 | 0.8228 | 0.6933 | 0.8228 | 0.9071 |
180
+ | No log | 3.44 | 258 | 0.8110 | 0.6933 | 0.8110 | 0.9005 |
181
+ | No log | 3.4667 | 260 | 0.7480 | 0.7248 | 0.7480 | 0.8649 |
182
+ | No log | 3.4933 | 262 | 0.7517 | 0.7467 | 0.7517 | 0.8670 |
183
+ | No log | 3.52 | 264 | 0.8304 | 0.6531 | 0.8304 | 0.9113 |
184
+ | No log | 3.5467 | 266 | 0.8847 | 0.6338 | 0.8847 | 0.9406 |
185
+ | No log | 3.5733 | 268 | 0.9792 | 0.6143 | 0.9792 | 0.9895 |
186
+ | No log | 3.6 | 270 | 1.1103 | 0.5775 | 1.1103 | 1.0537 |
187
+ | No log | 3.6267 | 272 | 1.1819 | 0.5772 | 1.1819 | 1.0871 |
188
+ | No log | 3.6533 | 274 | 1.1139 | 0.6194 | 1.1139 | 1.0554 |
189
+ | No log | 3.68 | 276 | 0.9879 | 0.6795 | 0.9879 | 0.9939 |
190
+ | No log | 3.7067 | 278 | 0.9530 | 0.6795 | 0.9530 | 0.9762 |
191
+ | No log | 3.7333 | 280 | 0.8750 | 0.6883 | 0.8750 | 0.9354 |
192
+ | No log | 3.76 | 282 | 0.8212 | 0.7051 | 0.8212 | 0.9062 |
193
+ | No log | 3.7867 | 284 | 0.8460 | 0.6879 | 0.8460 | 0.9198 |
194
+ | No log | 3.8133 | 286 | 0.9590 | 0.7073 | 0.9590 | 0.9793 |
195
+ | No log | 3.84 | 288 | 0.9822 | 0.6879 | 0.9822 | 0.9911 |
196
+ | No log | 3.8667 | 290 | 0.9018 | 0.6622 | 0.9018 | 0.9496 |
197
+ | No log | 3.8933 | 292 | 0.8417 | 0.6849 | 0.8417 | 0.9175 |
198
+ | No log | 3.92 | 294 | 0.8231 | 0.6849 | 0.8231 | 0.9072 |
199
+ | No log | 3.9467 | 296 | 0.8336 | 0.6849 | 0.8336 | 0.9130 |
200
+ | No log | 3.9733 | 298 | 0.9300 | 0.6753 | 0.9300 | 0.9644 |
201
+ | No log | 4.0 | 300 | 1.0312 | 0.6946 | 1.0312 | 1.0155 |
202
+ | No log | 4.0267 | 302 | 1.0142 | 0.6835 | 1.0142 | 1.0071 |
203
+ | No log | 4.0533 | 304 | 0.9042 | 0.6667 | 0.9042 | 0.9509 |
204
+ | No log | 4.08 | 306 | 0.8233 | 0.6763 | 0.8233 | 0.9074 |
205
+ | No log | 4.1067 | 308 | 0.7849 | 0.7297 | 0.7849 | 0.8859 |
206
+ | No log | 4.1333 | 310 | 0.8086 | 0.6892 | 0.8086 | 0.8992 |
207
+ | No log | 4.16 | 312 | 0.8434 | 0.6708 | 0.8434 | 0.9184 |
208
+ | No log | 4.1867 | 314 | 0.8597 | 0.6667 | 0.8597 | 0.9272 |
209
+ | No log | 4.2133 | 316 | 0.8039 | 0.6707 | 0.8039 | 0.8966 |
210
+ | No log | 4.24 | 318 | 0.7587 | 0.7089 | 0.7587 | 0.8711 |
211
+ | No log | 4.2667 | 320 | 0.7797 | 0.7020 | 0.7797 | 0.8830 |
212
+ | No log | 4.2933 | 322 | 0.8696 | 0.6980 | 0.8696 | 0.9325 |
213
+ | No log | 4.32 | 324 | 0.9971 | 0.6415 | 0.9971 | 0.9986 |
214
+ | No log | 4.3467 | 326 | 0.9556 | 0.6928 | 0.9556 | 0.9776 |
215
+ | No log | 4.3733 | 328 | 0.9013 | 0.6897 | 0.9013 | 0.9494 |
216
+ | No log | 4.4 | 330 | 0.8171 | 0.6806 | 0.8171 | 0.9039 |
217
+ | No log | 4.4267 | 332 | 0.7826 | 0.6806 | 0.7826 | 0.8846 |
218
+ | No log | 4.4533 | 334 | 0.8317 | 0.7160 | 0.8317 | 0.9120 |
219
+ | No log | 4.48 | 336 | 0.8134 | 0.6875 | 0.8134 | 0.9019 |
220
+ | No log | 4.5067 | 338 | 0.7539 | 0.6986 | 0.7539 | 0.8683 |
221
+ | No log | 4.5333 | 340 | 0.7251 | 0.7586 | 0.7251 | 0.8515 |
222
+ | No log | 4.5600 | 342 | 0.7196 | 0.7586 | 0.7196 | 0.8483 |
223
+ | No log | 4.5867 | 344 | 0.7581 | 0.7172 | 0.7581 | 0.8707 |
224
+ | No log | 4.6133 | 346 | 0.8706 | 0.6452 | 0.8706 | 0.9331 |
225
+ | No log | 4.64 | 348 | 0.8928 | 0.6575 | 0.8928 | 0.9449 |
226
+ | No log | 4.6667 | 350 | 0.8076 | 0.6667 | 0.8076 | 0.8987 |
227
+ | No log | 4.6933 | 352 | 0.7308 | 0.7482 | 0.7308 | 0.8549 |
228
+ | No log | 4.72 | 354 | 0.7093 | 0.7448 | 0.7093 | 0.8422 |
229
+ | No log | 4.7467 | 356 | 0.7407 | 0.7260 | 0.7407 | 0.8606 |
230
+ | No log | 4.7733 | 358 | 0.7957 | 0.6579 | 0.7957 | 0.8920 |
231
+ | No log | 4.8 | 360 | 0.8123 | 0.6667 | 0.8123 | 0.9013 |
232
+ | No log | 4.8267 | 362 | 0.7446 | 0.7260 | 0.7446 | 0.8629 |
233
+ | No log | 4.8533 | 364 | 0.7353 | 0.7075 | 0.7353 | 0.8575 |
234
+ | No log | 4.88 | 366 | 0.7361 | 0.7190 | 0.7361 | 0.8580 |
235
+ | No log | 4.9067 | 368 | 0.7259 | 0.7296 | 0.7259 | 0.8520 |
236
+ | No log | 4.9333 | 370 | 0.6900 | 0.7421 | 0.6900 | 0.8306 |
237
+ | No log | 4.96 | 372 | 0.6774 | 0.7531 | 0.6774 | 0.8231 |
238
+ | No log | 4.9867 | 374 | 0.6182 | 0.7742 | 0.6182 | 0.7862 |
239
+ | No log | 5.0133 | 376 | 0.6223 | 0.8054 | 0.6223 | 0.7889 |
240
+ | No log | 5.04 | 378 | 0.6672 | 0.7724 | 0.6672 | 0.8168 |
241
+ | No log | 5.0667 | 380 | 0.7741 | 0.6761 | 0.7741 | 0.8798 |
242
+ | No log | 5.0933 | 382 | 0.9519 | 0.6752 | 0.9519 | 0.9756 |
243
+ | No log | 5.12 | 384 | 1.0898 | 0.6471 | 1.0898 | 1.0439 |
244
+ | No log | 5.1467 | 386 | 1.0006 | 0.6628 | 1.0006 | 1.0003 |
245
+ | No log | 5.1733 | 388 | 0.7750 | 0.6842 | 0.7750 | 0.8804 |
246
+ | No log | 5.2 | 390 | 0.6647 | 0.7778 | 0.6647 | 0.8153 |
247
+ | No log | 5.2267 | 392 | 0.6656 | 0.7552 | 0.6656 | 0.8158 |
248
+ | No log | 5.2533 | 394 | 0.6535 | 0.75 | 0.6535 | 0.8084 |
249
+ | No log | 5.28 | 396 | 0.6453 | 0.8052 | 0.6453 | 0.8033 |
250
+ | No log | 5.3067 | 398 | 0.7204 | 0.7368 | 0.7204 | 0.8488 |
251
+ | No log | 5.3333 | 400 | 0.8184 | 0.7416 | 0.8184 | 0.9047 |
252
+ | No log | 5.36 | 402 | 0.8032 | 0.7209 | 0.8032 | 0.8962 |
253
+ | No log | 5.3867 | 404 | 0.8264 | 0.7 | 0.8264 | 0.9091 |
254
+ | No log | 5.4133 | 406 | 0.7947 | 0.6475 | 0.7947 | 0.8915 |
255
+ | No log | 5.44 | 408 | 0.7976 | 0.6767 | 0.7976 | 0.8931 |
256
+ | No log | 5.4667 | 410 | 0.8541 | 0.6212 | 0.8541 | 0.9242 |
257
+ | No log | 5.4933 | 412 | 0.8727 | 0.6370 | 0.8727 | 0.9342 |
258
+ | No log | 5.52 | 414 | 0.8625 | 0.6383 | 0.8625 | 0.9287 |
259
+ | No log | 5.5467 | 416 | 0.8559 | 0.6711 | 0.8559 | 0.9252 |
260
+ | No log | 5.5733 | 418 | 0.9579 | 0.6867 | 0.9579 | 0.9787 |
261
+ | No log | 5.6 | 420 | 0.9788 | 0.6706 | 0.9788 | 0.9893 |
262
+ | No log | 5.6267 | 422 | 0.8914 | 0.6914 | 0.8914 | 0.9441 |
263
+ | No log | 5.6533 | 424 | 0.8526 | 0.6797 | 0.8526 | 0.9233 |
264
+ | No log | 5.68 | 426 | 0.7930 | 0.6759 | 0.7930 | 0.8905 |
265
+ | No log | 5.7067 | 428 | 0.7854 | 0.6857 | 0.7854 | 0.8862 |
266
+ | No log | 5.7333 | 430 | 0.8217 | 0.6857 | 0.8217 | 0.9065 |
267
+ | No log | 5.76 | 432 | 0.8823 | 0.6434 | 0.8823 | 0.9393 |
268
+ | No log | 5.7867 | 434 | 0.9145 | 0.6711 | 0.9145 | 0.9563 |
269
+ | No log | 5.8133 | 436 | 0.9345 | 0.6624 | 0.9345 | 0.9667 |
270
+ | No log | 5.84 | 438 | 0.9181 | 0.6755 | 0.9181 | 0.9582 |
271
+ | No log | 5.8667 | 440 | 0.8573 | 0.6621 | 0.8573 | 0.9259 |
272
+ | No log | 5.8933 | 442 | 0.8173 | 0.6883 | 0.8173 | 0.9040 |
273
+ | No log | 5.92 | 444 | 0.8104 | 0.7229 | 0.8104 | 0.9002 |
274
+ | No log | 5.9467 | 446 | 0.8336 | 0.7241 | 0.8336 | 0.9130 |
275
+ | No log | 5.9733 | 448 | 0.7490 | 0.7073 | 0.7490 | 0.8655 |
276
+ | No log | 6.0 | 450 | 0.6654 | 0.7755 | 0.6654 | 0.8157 |
277
+ | No log | 6.0267 | 452 | 0.6448 | 0.7639 | 0.6448 | 0.8030 |
278
+ | No log | 6.0533 | 454 | 0.6329 | 0.7639 | 0.6329 | 0.7956 |
279
+ | No log | 6.08 | 456 | 0.6606 | 0.7722 | 0.6606 | 0.8128 |
280
+ | No log | 6.1067 | 458 | 0.8110 | 0.7273 | 0.8110 | 0.9006 |
281
+ | No log | 6.1333 | 460 | 0.8862 | 0.7168 | 0.8862 | 0.9414 |
282
+ | No log | 6.16 | 462 | 0.8165 | 0.6447 | 0.8165 | 0.9036 |
283
+ | No log | 6.1867 | 464 | 0.7252 | 0.7246 | 0.7252 | 0.8516 |
284
+ | No log | 6.2133 | 466 | 0.7203 | 0.7286 | 0.7203 | 0.8487 |
285
+ | No log | 6.24 | 468 | 0.7232 | 0.7376 | 0.7232 | 0.8504 |
286
+ | No log | 6.2667 | 470 | 0.8042 | 0.6962 | 0.8042 | 0.8968 |
287
+ | No log | 6.2933 | 472 | 0.9441 | 0.7059 | 0.9441 | 0.9716 |
288
+ | No log | 6.32 | 474 | 1.0698 | 0.6590 | 1.0698 | 1.0343 |
289
+ | No log | 6.3467 | 476 | 1.1152 | 0.5541 | 1.1152 | 1.0560 |
290
+ | No log | 6.3733 | 478 | 1.1601 | 0.5441 | 1.1601 | 1.0771 |
291
+ | No log | 6.4 | 480 | 1.1189 | 0.6015 | 1.1189 | 1.0578 |
292
+ | No log | 6.4267 | 482 | 1.0617 | 0.6119 | 1.0617 | 1.0304 |
293
+ | No log | 6.4533 | 484 | 0.9927 | 0.6423 | 0.9927 | 0.9964 |
294
+ | No log | 6.48 | 486 | 0.9448 | 0.6571 | 0.9448 | 0.9720 |
295
+ | No log | 6.5067 | 488 | 0.8540 | 0.6761 | 0.8540 | 0.9241 |
296
+ | No log | 6.5333 | 490 | 0.8157 | 0.7092 | 0.8157 | 0.9032 |
297
+ | No log | 6.5600 | 492 | 0.7628 | 0.7042 | 0.7628 | 0.8734 |
298
+ | No log | 6.5867 | 494 | 0.7473 | 0.7042 | 0.7473 | 0.8644 |
299
+ | No log | 6.6133 | 496 | 0.7532 | 0.7020 | 0.7532 | 0.8679 |
300
+ | No log | 6.64 | 498 | 0.7335 | 0.7215 | 0.7335 | 0.8564 |
301
+ | 0.4387 | 6.6667 | 500 | 0.7451 | 0.7329 | 0.7451 | 0.8632 |
302
+ | 0.4387 | 6.6933 | 502 | 0.7459 | 0.7425 | 0.7459 | 0.8637 |
303
+ | 0.4387 | 6.72 | 504 | 0.6933 | 0.7172 | 0.6933 | 0.8326 |
304
+ | 0.4387 | 6.7467 | 506 | 0.7113 | 0.7299 | 0.7113 | 0.8434 |
305
+ | 0.4387 | 6.7733 | 508 | 0.7200 | 0.7353 | 0.7200 | 0.8485 |
306
+ | 0.4387 | 6.8 | 510 | 0.7192 | 0.7259 | 0.7192 | 0.8480 |
307
+ | 0.4387 | 6.8267 | 512 | 0.7357 | 0.7153 | 0.7357 | 0.8577 |
308
+ | 0.4387 | 6.8533 | 514 | 0.8000 | 0.6331 | 0.8000 | 0.8945 |
309
+ | 0.4387 | 6.88 | 516 | 0.8622 | 0.6331 | 0.8622 | 0.9285 |
310
+ | 0.4387 | 6.9067 | 518 | 0.8610 | 0.6619 | 0.8610 | 0.9279 |
311
+
312
+
313
+ ### Framework versions
314
+
315
+ - Transformers 4.44.2
316
+ - Pytorch 2.4.0+cu118
317
+ - Datasets 2.21.0
318
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35e5c6e3e5c2594f41652add085467a20c2c20052e1ced7bace289be2f7cfdf4
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec68188a4b0f07cdb75ca3d06f9cefa33876e60844eced704a6fdbcf3f2090bf
3
+ size 5304