MayBashendy commited on
Commit
da9cfdc
·
verified ·
1 Parent(s): 20a3514

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +317 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k10_task7_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k10_task7_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5531
19
+ - Qwk: 0.4526
20
+ - Mse: 0.5531
21
+ - Rmse: 0.7437
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0364 | 2 | 2.6000 | -0.0084 | 2.6000 | 1.6124 |
53
+ | No log | 0.0727 | 4 | 1.2395 | 0.0994 | 1.2395 | 1.1133 |
54
+ | No log | 0.1091 | 6 | 0.9318 | -0.0970 | 0.9318 | 0.9653 |
55
+ | No log | 0.1455 | 8 | 0.8602 | 0.1628 | 0.8602 | 0.9275 |
56
+ | No log | 0.1818 | 10 | 0.7642 | 0.2722 | 0.7642 | 0.8742 |
57
+ | No log | 0.2182 | 12 | 0.8290 | 0.3261 | 0.8290 | 0.9105 |
58
+ | No log | 0.2545 | 14 | 0.7337 | 0.1308 | 0.7337 | 0.8565 |
59
+ | No log | 0.2909 | 16 | 0.7062 | 0.2007 | 0.7062 | 0.8404 |
60
+ | No log | 0.3273 | 18 | 0.7674 | 0.4412 | 0.7674 | 0.8760 |
61
+ | No log | 0.3636 | 20 | 0.7125 | 0.4412 | 0.7125 | 0.8441 |
62
+ | No log | 0.4 | 22 | 0.7741 | 0.3371 | 0.7741 | 0.8798 |
63
+ | No log | 0.4364 | 24 | 0.9811 | 0.2806 | 0.9811 | 0.9905 |
64
+ | No log | 0.4727 | 26 | 0.7108 | 0.4444 | 0.7108 | 0.8431 |
65
+ | No log | 0.5091 | 28 | 0.5763 | 0.4517 | 0.5763 | 0.7591 |
66
+ | No log | 0.5455 | 30 | 0.6046 | 0.4302 | 0.6046 | 0.7776 |
67
+ | No log | 0.5818 | 32 | 0.5421 | 0.5089 | 0.5421 | 0.7363 |
68
+ | No log | 0.6182 | 34 | 0.6588 | 0.5131 | 0.6588 | 0.8117 |
69
+ | No log | 0.6545 | 36 | 0.8622 | 0.3019 | 0.8622 | 0.9286 |
70
+ | No log | 0.6909 | 38 | 0.7942 | 0.3799 | 0.7942 | 0.8912 |
71
+ | No log | 0.7273 | 40 | 0.7055 | 0.4502 | 0.7055 | 0.8399 |
72
+ | No log | 0.7636 | 42 | 0.6951 | 0.2182 | 0.6951 | 0.8337 |
73
+ | No log | 0.8 | 44 | 0.6869 | 0.1697 | 0.6869 | 0.8288 |
74
+ | No log | 0.8364 | 46 | 0.6318 | 0.3443 | 0.6318 | 0.7949 |
75
+ | No log | 0.8727 | 48 | 0.6271 | 0.2038 | 0.6271 | 0.7919 |
76
+ | No log | 0.9091 | 50 | 0.6922 | 0.3023 | 0.6922 | 0.8320 |
77
+ | No log | 0.9455 | 52 | 0.5976 | 0.4441 | 0.5976 | 0.7730 |
78
+ | No log | 0.9818 | 54 | 0.6012 | 0.4595 | 0.6012 | 0.7754 |
79
+ | No log | 1.0182 | 56 | 0.6577 | 0.4190 | 0.6577 | 0.8110 |
80
+ | No log | 1.0545 | 58 | 0.8560 | 0.3719 | 0.8560 | 0.9252 |
81
+ | No log | 1.0909 | 60 | 1.0749 | 0.3129 | 1.0749 | 1.0368 |
82
+ | No log | 1.1273 | 62 | 1.0215 | 0.2935 | 1.0215 | 1.0107 |
83
+ | No log | 1.1636 | 64 | 0.7183 | 0.3677 | 0.7183 | 0.8475 |
84
+ | No log | 1.2 | 66 | 0.6312 | 0.4555 | 0.6312 | 0.7945 |
85
+ | No log | 1.2364 | 68 | 0.6431 | 0.3914 | 0.6431 | 0.8019 |
86
+ | No log | 1.2727 | 70 | 0.9106 | 0.3425 | 0.9106 | 0.9542 |
87
+ | No log | 1.3091 | 72 | 1.2157 | 0.2346 | 1.2157 | 1.1026 |
88
+ | No log | 1.3455 | 74 | 1.1075 | 0.2880 | 1.1075 | 1.0524 |
89
+ | No log | 1.3818 | 76 | 0.9433 | 0.3214 | 0.9433 | 0.9712 |
90
+ | No log | 1.4182 | 78 | 0.6729 | 0.4281 | 0.6729 | 0.8203 |
91
+ | No log | 1.4545 | 80 | 0.6579 | 0.4655 | 0.6579 | 0.8111 |
92
+ | No log | 1.4909 | 82 | 0.6667 | 0.3831 | 0.6667 | 0.8165 |
93
+ | No log | 1.5273 | 84 | 0.5816 | 0.5235 | 0.5816 | 0.7626 |
94
+ | No log | 1.5636 | 86 | 0.6708 | 0.4014 | 0.6708 | 0.8190 |
95
+ | No log | 1.6 | 88 | 0.7312 | 0.4627 | 0.7312 | 0.8551 |
96
+ | No log | 1.6364 | 90 | 0.6696 | 0.4444 | 0.6696 | 0.8183 |
97
+ | No log | 1.6727 | 92 | 0.6140 | 0.4864 | 0.6140 | 0.7836 |
98
+ | No log | 1.7091 | 94 | 0.5767 | 0.5071 | 0.5767 | 0.7594 |
99
+ | No log | 1.7455 | 96 | 0.5839 | 0.4596 | 0.5839 | 0.7641 |
100
+ | No log | 1.7818 | 98 | 0.6337 | 0.5123 | 0.6337 | 0.7960 |
101
+ | No log | 1.8182 | 100 | 0.7348 | 0.4197 | 0.7348 | 0.8572 |
102
+ | No log | 1.8545 | 102 | 0.7717 | 0.4014 | 0.7717 | 0.8785 |
103
+ | No log | 1.8909 | 104 | 0.7010 | 0.3519 | 0.7010 | 0.8372 |
104
+ | No log | 1.9273 | 106 | 0.6171 | 0.4136 | 0.6171 | 0.7855 |
105
+ | No log | 1.9636 | 108 | 0.6141 | 0.3289 | 0.6141 | 0.7836 |
106
+ | No log | 2.0 | 110 | 0.6052 | 0.4816 | 0.6052 | 0.7779 |
107
+ | No log | 2.0364 | 112 | 0.7318 | 0.3384 | 0.7318 | 0.8554 |
108
+ | No log | 2.0727 | 114 | 0.8716 | 0.3636 | 0.8716 | 0.9336 |
109
+ | No log | 2.1091 | 116 | 0.7752 | 0.4741 | 0.7752 | 0.8805 |
110
+ | No log | 2.1455 | 118 | 0.6242 | 0.4819 | 0.6242 | 0.7901 |
111
+ | No log | 2.1818 | 120 | 0.6057 | 0.4901 | 0.6057 | 0.7782 |
112
+ | No log | 2.2182 | 122 | 0.6010 | 0.4819 | 0.6010 | 0.7753 |
113
+ | No log | 2.2545 | 124 | 0.6003 | 0.4819 | 0.6003 | 0.7748 |
114
+ | No log | 2.2909 | 126 | 0.5732 | 0.5604 | 0.5732 | 0.7571 |
115
+ | No log | 2.3273 | 128 | 0.5711 | 0.5533 | 0.5711 | 0.7557 |
116
+ | No log | 2.3636 | 130 | 0.5873 | 0.4919 | 0.5873 | 0.7664 |
117
+ | No log | 2.4 | 132 | 0.6105 | 0.5411 | 0.6105 | 0.7814 |
118
+ | No log | 2.4364 | 134 | 0.5899 | 0.4901 | 0.5899 | 0.7680 |
119
+ | No log | 2.4727 | 136 | 0.5826 | 0.4919 | 0.5826 | 0.7633 |
120
+ | No log | 2.5091 | 138 | 0.5722 | 0.5184 | 0.5722 | 0.7564 |
121
+ | No log | 2.5455 | 140 | 0.5880 | 0.5336 | 0.5880 | 0.7668 |
122
+ | No log | 2.5818 | 142 | 0.5773 | 0.5118 | 0.5773 | 0.7598 |
123
+ | No log | 2.6182 | 144 | 0.5886 | 0.5118 | 0.5886 | 0.7672 |
124
+ | No log | 2.6545 | 146 | 0.5929 | 0.4782 | 0.5929 | 0.7700 |
125
+ | No log | 2.6909 | 148 | 0.5806 | 0.4535 | 0.5806 | 0.7620 |
126
+ | No log | 2.7273 | 150 | 0.5390 | 0.4596 | 0.5390 | 0.7341 |
127
+ | No log | 2.7636 | 152 | 0.5344 | 0.4591 | 0.5344 | 0.7310 |
128
+ | No log | 2.8 | 154 | 0.5399 | 0.4726 | 0.5399 | 0.7348 |
129
+ | No log | 2.8364 | 156 | 0.5687 | 0.5036 | 0.5687 | 0.7541 |
130
+ | No log | 2.8727 | 158 | 0.5522 | 0.4747 | 0.5522 | 0.7431 |
131
+ | No log | 2.9091 | 160 | 0.5516 | 0.4747 | 0.5516 | 0.7427 |
132
+ | No log | 2.9455 | 162 | 0.6043 | 0.5104 | 0.6043 | 0.7774 |
133
+ | No log | 2.9818 | 164 | 0.5941 | 0.5034 | 0.5941 | 0.7708 |
134
+ | No log | 3.0182 | 166 | 0.5601 | 0.5373 | 0.5601 | 0.7484 |
135
+ | No log | 3.0545 | 168 | 0.5983 | 0.5195 | 0.5983 | 0.7735 |
136
+ | No log | 3.0909 | 170 | 0.5719 | 0.5596 | 0.5719 | 0.7562 |
137
+ | No log | 3.1273 | 172 | 0.6122 | 0.4596 | 0.6122 | 0.7824 |
138
+ | No log | 3.1636 | 174 | 0.6628 | 0.5435 | 0.6628 | 0.8141 |
139
+ | No log | 3.2 | 176 | 0.5844 | 0.5089 | 0.5844 | 0.7644 |
140
+ | No log | 3.2364 | 178 | 0.5276 | 0.5596 | 0.5276 | 0.7263 |
141
+ | No log | 3.2727 | 180 | 0.5242 | 0.5390 | 0.5242 | 0.7240 |
142
+ | No log | 3.3091 | 182 | 0.5251 | 0.4942 | 0.5251 | 0.7246 |
143
+ | No log | 3.3455 | 184 | 0.5152 | 0.5522 | 0.5152 | 0.7178 |
144
+ | No log | 3.3818 | 186 | 0.5591 | 0.4979 | 0.5591 | 0.7477 |
145
+ | No log | 3.4182 | 188 | 0.6609 | 0.5265 | 0.6609 | 0.8130 |
146
+ | No log | 3.4545 | 190 | 0.5739 | 0.4850 | 0.5739 | 0.7575 |
147
+ | No log | 3.4909 | 192 | 0.5047 | 0.5195 | 0.5047 | 0.7104 |
148
+ | No log | 3.5273 | 194 | 0.5328 | 0.5214 | 0.5328 | 0.7299 |
149
+ | No log | 3.5636 | 196 | 0.5083 | 0.5268 | 0.5083 | 0.7130 |
150
+ | No log | 3.6 | 198 | 0.5088 | 0.5596 | 0.5088 | 0.7133 |
151
+ | No log | 3.6364 | 200 | 0.6137 | 0.5528 | 0.6137 | 0.7834 |
152
+ | No log | 3.6727 | 202 | 0.6838 | 0.5018 | 0.6838 | 0.8269 |
153
+ | No log | 3.7091 | 204 | 0.6155 | 0.5735 | 0.6155 | 0.7846 |
154
+ | No log | 3.7455 | 206 | 0.5426 | 0.5184 | 0.5426 | 0.7366 |
155
+ | No log | 3.7818 | 208 | 0.5201 | 0.5677 | 0.5201 | 0.7212 |
156
+ | No log | 3.8182 | 210 | 0.5297 | 0.5951 | 0.5297 | 0.7278 |
157
+ | No log | 3.8545 | 212 | 0.5135 | 0.5184 | 0.5135 | 0.7166 |
158
+ | No log | 3.8909 | 214 | 0.5285 | 0.5168 | 0.5285 | 0.7270 |
159
+ | No log | 3.9273 | 216 | 0.5328 | 0.5250 | 0.5328 | 0.7299 |
160
+ | No log | 3.9636 | 218 | 0.5161 | 0.5492 | 0.5161 | 0.7184 |
161
+ | No log | 4.0 | 220 | 0.5380 | 0.4782 | 0.5380 | 0.7335 |
162
+ | No log | 4.0364 | 222 | 0.5548 | 0.4847 | 0.5548 | 0.7449 |
163
+ | No log | 4.0727 | 224 | 0.5401 | 0.4847 | 0.5401 | 0.7349 |
164
+ | No log | 4.1091 | 226 | 0.5157 | 0.4866 | 0.5157 | 0.7181 |
165
+ | No log | 4.1455 | 228 | 0.5421 | 0.4979 | 0.5421 | 0.7363 |
166
+ | No log | 4.1818 | 230 | 0.5692 | 0.4756 | 0.5692 | 0.7544 |
167
+ | No log | 4.2182 | 232 | 0.5332 | 0.4367 | 0.5332 | 0.7302 |
168
+ | No log | 4.2545 | 234 | 0.5320 | 0.4229 | 0.5320 | 0.7294 |
169
+ | No log | 4.2909 | 236 | 0.5618 | 0.4597 | 0.5618 | 0.7495 |
170
+ | No log | 4.3273 | 238 | 0.5322 | 0.4660 | 0.5322 | 0.7296 |
171
+ | No log | 4.3636 | 240 | 0.5036 | 0.4829 | 0.5036 | 0.7097 |
172
+ | No log | 4.4 | 242 | 0.5134 | 0.4486 | 0.5134 | 0.7165 |
173
+ | No log | 4.4364 | 244 | 0.5822 | 0.5384 | 0.5822 | 0.7630 |
174
+ | No log | 4.4727 | 246 | 0.5779 | 0.5384 | 0.5779 | 0.7602 |
175
+ | No log | 4.5091 | 248 | 0.4957 | 0.5319 | 0.4957 | 0.7041 |
176
+ | No log | 4.5455 | 250 | 0.4913 | 0.5306 | 0.4913 | 0.7009 |
177
+ | No log | 4.5818 | 252 | 0.5166 | 0.5501 | 0.5166 | 0.7187 |
178
+ | No log | 4.6182 | 254 | 0.5761 | 0.5395 | 0.5761 | 0.7590 |
179
+ | No log | 4.6545 | 256 | 0.5460 | 0.5485 | 0.5460 | 0.7389 |
180
+ | No log | 4.6909 | 258 | 0.4907 | 0.4892 | 0.4907 | 0.7005 |
181
+ | No log | 4.7273 | 260 | 0.5084 | 0.5649 | 0.5084 | 0.7130 |
182
+ | No log | 4.7636 | 262 | 0.5325 | 0.5467 | 0.5325 | 0.7297 |
183
+ | No log | 4.8 | 264 | 0.5180 | 0.5270 | 0.5180 | 0.7197 |
184
+ | No log | 4.8364 | 266 | 0.5321 | 0.4958 | 0.5321 | 0.7295 |
185
+ | No log | 4.8727 | 268 | 0.5429 | 0.4919 | 0.5429 | 0.7368 |
186
+ | No log | 4.9091 | 270 | 0.5230 | 0.4847 | 0.5230 | 0.7232 |
187
+ | No log | 4.9455 | 272 | 0.5179 | 0.4484 | 0.5179 | 0.7196 |
188
+ | No log | 4.9818 | 274 | 0.5150 | 0.4484 | 0.5150 | 0.7176 |
189
+ | No log | 5.0182 | 276 | 0.5149 | 0.4147 | 0.5149 | 0.7176 |
190
+ | No log | 5.0545 | 278 | 0.5323 | 0.4397 | 0.5323 | 0.7296 |
191
+ | No log | 5.0909 | 280 | 0.5246 | 0.4397 | 0.5246 | 0.7243 |
192
+ | No log | 5.1273 | 282 | 0.4888 | 0.5089 | 0.4888 | 0.6992 |
193
+ | No log | 5.1636 | 284 | 0.5065 | 0.5495 | 0.5065 | 0.7117 |
194
+ | No log | 5.2 | 286 | 0.5191 | 0.5718 | 0.5191 | 0.7205 |
195
+ | No log | 5.2364 | 288 | 0.5268 | 0.5970 | 0.5268 | 0.7258 |
196
+ | No log | 5.2727 | 290 | 0.5484 | 0.6169 | 0.5484 | 0.7406 |
197
+ | No log | 5.3091 | 292 | 0.5424 | 0.5881 | 0.5424 | 0.7365 |
198
+ | No log | 5.3455 | 294 | 0.5292 | 0.5494 | 0.5292 | 0.7275 |
199
+ | No log | 5.3818 | 296 | 0.5226 | 0.5336 | 0.5226 | 0.7229 |
200
+ | No log | 5.4182 | 298 | 0.5213 | 0.5436 | 0.5213 | 0.7220 |
201
+ | No log | 5.4545 | 300 | 0.5375 | 0.5933 | 0.5375 | 0.7331 |
202
+ | No log | 5.4909 | 302 | 0.5269 | 0.5495 | 0.5269 | 0.7259 |
203
+ | No log | 5.5273 | 304 | 0.5071 | 0.5125 | 0.5071 | 0.7121 |
204
+ | No log | 5.5636 | 306 | 0.5345 | 0.4895 | 0.5345 | 0.7311 |
205
+ | No log | 5.6 | 308 | 0.5497 | 0.4292 | 0.5497 | 0.7414 |
206
+ | No log | 5.6364 | 310 | 0.5164 | 0.4953 | 0.5164 | 0.7186 |
207
+ | No log | 5.6727 | 312 | 0.5375 | 0.5841 | 0.5375 | 0.7332 |
208
+ | No log | 5.7091 | 314 | 0.5725 | 0.5841 | 0.5725 | 0.7566 |
209
+ | No log | 5.7455 | 316 | 0.5352 | 0.5178 | 0.5352 | 0.7316 |
210
+ | No log | 5.7818 | 318 | 0.5442 | 0.4895 | 0.5442 | 0.7377 |
211
+ | No log | 5.8182 | 320 | 0.6327 | 0.3942 | 0.6327 | 0.7954 |
212
+ | No log | 5.8545 | 322 | 0.6268 | 0.4134 | 0.6268 | 0.7917 |
213
+ | No log | 5.8909 | 324 | 0.6210 | 0.4393 | 0.6210 | 0.7880 |
214
+ | No log | 5.9273 | 326 | 0.5948 | 0.4377 | 0.5948 | 0.7712 |
215
+ | No log | 5.9636 | 328 | 0.6060 | 0.4301 | 0.6060 | 0.7785 |
216
+ | No log | 6.0 | 330 | 0.6001 | 0.3574 | 0.6001 | 0.7747 |
217
+ | No log | 6.0364 | 332 | 0.6206 | 0.3665 | 0.6206 | 0.7878 |
218
+ | No log | 6.0727 | 334 | 0.6051 | 0.3738 | 0.6051 | 0.7779 |
219
+ | No log | 6.1091 | 336 | 0.6031 | 0.3324 | 0.6031 | 0.7766 |
220
+ | No log | 6.1455 | 338 | 0.6042 | 0.3649 | 0.6042 | 0.7773 |
221
+ | No log | 6.1818 | 340 | 0.5722 | 0.4052 | 0.5722 | 0.7564 |
222
+ | No log | 6.2182 | 342 | 0.5466 | 0.3318 | 0.5466 | 0.7393 |
223
+ | No log | 6.2545 | 344 | 0.5322 | 0.4161 | 0.5322 | 0.7296 |
224
+ | No log | 6.2909 | 346 | 0.5403 | 0.4547 | 0.5403 | 0.7351 |
225
+ | No log | 6.3273 | 348 | 0.5516 | 0.3840 | 0.5516 | 0.7427 |
226
+ | No log | 6.3636 | 350 | 0.5302 | 0.4681 | 0.5302 | 0.7282 |
227
+ | No log | 6.4 | 352 | 0.5335 | 0.4809 | 0.5335 | 0.7304 |
228
+ | No log | 6.4364 | 354 | 0.5483 | 0.4782 | 0.5483 | 0.7405 |
229
+ | No log | 6.4727 | 356 | 0.5560 | 0.4717 | 0.5560 | 0.7456 |
230
+ | No log | 6.5091 | 358 | 0.5343 | 0.4299 | 0.5343 | 0.7309 |
231
+ | No log | 6.5455 | 360 | 0.5439 | 0.4267 | 0.5439 | 0.7375 |
232
+ | No log | 6.5818 | 362 | 0.5958 | 0.3763 | 0.5958 | 0.7719 |
233
+ | No log | 6.6182 | 364 | 0.5778 | 0.4267 | 0.5778 | 0.7601 |
234
+ | No log | 6.6545 | 366 | 0.5707 | 0.4267 | 0.5707 | 0.7554 |
235
+ | No log | 6.6909 | 368 | 0.5830 | 0.4182 | 0.5830 | 0.7635 |
236
+ | No log | 6.7273 | 370 | 0.5710 | 0.4267 | 0.5710 | 0.7556 |
237
+ | No log | 6.7636 | 372 | 0.5622 | 0.4504 | 0.5622 | 0.7498 |
238
+ | No log | 6.8 | 374 | 0.5784 | 0.4747 | 0.5784 | 0.7605 |
239
+ | No log | 6.8364 | 376 | 0.5931 | 0.4747 | 0.5931 | 0.7702 |
240
+ | No log | 6.8727 | 378 | 0.5996 | 0.4747 | 0.5996 | 0.7743 |
241
+ | No log | 6.9091 | 380 | 0.5982 | 0.4747 | 0.5982 | 0.7735 |
242
+ | No log | 6.9455 | 382 | 0.5934 | 0.4747 | 0.5934 | 0.7703 |
243
+ | No log | 6.9818 | 384 | 0.5838 | 0.4747 | 0.5838 | 0.7641 |
244
+ | No log | 7.0182 | 386 | 0.6028 | 0.4044 | 0.6028 | 0.7764 |
245
+ | No log | 7.0545 | 388 | 0.6047 | 0.4044 | 0.6047 | 0.7776 |
246
+ | No log | 7.0909 | 390 | 0.5935 | 0.4726 | 0.5935 | 0.7704 |
247
+ | No log | 7.1273 | 392 | 0.6021 | 0.4044 | 0.6021 | 0.7760 |
248
+ | No log | 7.1636 | 394 | 0.5872 | 0.4459 | 0.5872 | 0.7663 |
249
+ | No log | 7.2 | 396 | 0.5688 | 0.4816 | 0.5688 | 0.7542 |
250
+ | No log | 7.2364 | 398 | 0.5566 | 0.4816 | 0.5566 | 0.7460 |
251
+ | No log | 7.2727 | 400 | 0.5631 | 0.4726 | 0.5631 | 0.7504 |
252
+ | No log | 7.3091 | 402 | 0.5413 | 0.4504 | 0.5413 | 0.7357 |
253
+ | No log | 7.3455 | 404 | 0.5383 | 0.4722 | 0.5383 | 0.7337 |
254
+ | No log | 7.3818 | 406 | 0.5397 | 0.4885 | 0.5397 | 0.7347 |
255
+ | No log | 7.4182 | 408 | 0.5435 | 0.4300 | 0.5435 | 0.7372 |
256
+ | No log | 7.4545 | 410 | 0.5391 | 0.4637 | 0.5391 | 0.7342 |
257
+ | No log | 7.4909 | 412 | 0.5342 | 0.4904 | 0.5342 | 0.7309 |
258
+ | No log | 7.5273 | 414 | 0.5377 | 0.4942 | 0.5377 | 0.7333 |
259
+ | No log | 7.5636 | 416 | 0.5285 | 0.4904 | 0.5285 | 0.7270 |
260
+ | No log | 7.6 | 418 | 0.5528 | 0.4914 | 0.5528 | 0.7435 |
261
+ | No log | 7.6364 | 420 | 0.5986 | 0.4393 | 0.5986 | 0.7737 |
262
+ | No log | 7.6727 | 422 | 0.5712 | 0.4895 | 0.5712 | 0.7558 |
263
+ | No log | 7.7091 | 424 | 0.5514 | 0.4782 | 0.5514 | 0.7426 |
264
+ | No log | 7.7455 | 426 | 0.5651 | 0.4635 | 0.5651 | 0.7517 |
265
+ | No log | 7.7818 | 428 | 0.6391 | 0.5051 | 0.6391 | 0.7994 |
266
+ | No log | 7.8182 | 430 | 0.6897 | 0.4833 | 0.6897 | 0.8305 |
267
+ | No log | 7.8545 | 432 | 0.6819 | 0.4833 | 0.6819 | 0.8258 |
268
+ | No log | 7.8909 | 434 | 0.6059 | 0.4908 | 0.6059 | 0.7784 |
269
+ | No log | 7.9273 | 436 | 0.5438 | 0.4345 | 0.5438 | 0.7374 |
270
+ | No log | 7.9636 | 438 | 0.5395 | 0.4299 | 0.5395 | 0.7345 |
271
+ | No log | 8.0 | 440 | 0.5455 | 0.3889 | 0.5455 | 0.7386 |
272
+ | No log | 8.0364 | 442 | 0.5524 | 0.3920 | 0.5524 | 0.7433 |
273
+ | No log | 8.0727 | 444 | 0.5629 | 0.3604 | 0.5629 | 0.7503 |
274
+ | No log | 8.1091 | 446 | 0.5707 | 0.3604 | 0.5707 | 0.7555 |
275
+ | No log | 8.1455 | 448 | 0.5697 | 0.3633 | 0.5697 | 0.7548 |
276
+ | No log | 8.1818 | 450 | 0.5686 | 0.4161 | 0.5686 | 0.7540 |
277
+ | No log | 8.2182 | 452 | 0.5713 | 0.3889 | 0.5713 | 0.7558 |
278
+ | No log | 8.2545 | 454 | 0.5707 | 0.4224 | 0.5707 | 0.7555 |
279
+ | No log | 8.2909 | 456 | 0.5776 | 0.4291 | 0.5776 | 0.7600 |
280
+ | No log | 8.3273 | 458 | 0.5654 | 0.4752 | 0.5654 | 0.7519 |
281
+ | No log | 8.3636 | 460 | 0.5629 | 0.3889 | 0.5629 | 0.7503 |
282
+ | No log | 8.4 | 462 | 0.5662 | 0.3019 | 0.5662 | 0.7525 |
283
+ | No log | 8.4364 | 464 | 0.5805 | 0.3781 | 0.5805 | 0.7619 |
284
+ | No log | 8.4727 | 466 | 0.5883 | 0.3675 | 0.5883 | 0.7670 |
285
+ | No log | 8.5091 | 468 | 0.5690 | 0.4747 | 0.5690 | 0.7543 |
286
+ | No log | 8.5455 | 470 | 0.5659 | 0.4596 | 0.5659 | 0.7523 |
287
+ | No log | 8.5818 | 472 | 0.5723 | 0.4681 | 0.5723 | 0.7565 |
288
+ | No log | 8.6182 | 474 | 0.5603 | 0.4596 | 0.5603 | 0.7486 |
289
+ | No log | 8.6545 | 476 | 0.5577 | 0.4828 | 0.5577 | 0.7468 |
290
+ | No log | 8.6909 | 478 | 0.5710 | 0.4828 | 0.5710 | 0.7556 |
291
+ | No log | 8.7273 | 480 | 0.6228 | 0.4448 | 0.6228 | 0.7892 |
292
+ | No log | 8.7636 | 482 | 0.6272 | 0.4413 | 0.6272 | 0.7920 |
293
+ | No log | 8.8 | 484 | 0.5898 | 0.4434 | 0.5898 | 0.7680 |
294
+ | No log | 8.8364 | 486 | 0.5691 | 0.4828 | 0.5691 | 0.7544 |
295
+ | No log | 8.8727 | 488 | 0.5543 | 0.4914 | 0.5543 | 0.7445 |
296
+ | No log | 8.9091 | 490 | 0.5704 | 0.4964 | 0.5704 | 0.7553 |
297
+ | No log | 8.9455 | 492 | 0.5623 | 0.5056 | 0.5623 | 0.7499 |
298
+ | No log | 8.9818 | 494 | 0.5421 | 0.4276 | 0.5421 | 0.7363 |
299
+ | No log | 9.0182 | 496 | 0.5439 | 0.4019 | 0.5439 | 0.7375 |
300
+ | No log | 9.0545 | 498 | 0.5450 | 0.4019 | 0.5450 | 0.7382 |
301
+ | 0.246 | 9.0909 | 500 | 0.5568 | 0.4526 | 0.5568 | 0.7462 |
302
+ | 0.246 | 9.1273 | 502 | 0.6175 | 0.3737 | 0.6175 | 0.7858 |
303
+ | 0.246 | 9.1636 | 504 | 0.6380 | 0.3662 | 0.6380 | 0.7987 |
304
+ | 0.246 | 9.2 | 506 | 0.5908 | 0.4639 | 0.5908 | 0.7686 |
305
+ | 0.246 | 9.2364 | 508 | 0.5404 | 0.4276 | 0.5404 | 0.7351 |
306
+ | 0.246 | 9.2727 | 510 | 0.5684 | 0.4227 | 0.5684 | 0.7539 |
307
+ | 0.246 | 9.3091 | 512 | 0.5765 | 0.4227 | 0.5765 | 0.7593 |
308
+ | 0.246 | 9.3455 | 514 | 0.5522 | 0.3988 | 0.5522 | 0.7431 |
309
+ | 0.246 | 9.3818 | 516 | 0.5531 | 0.4526 | 0.5531 | 0.7437 |
310
+
311
+
312
+ ### Framework versions
313
+
314
+ - Transformers 4.44.2
315
+ - Pytorch 2.4.0+cu118
316
+ - Datasets 2.21.0
317
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54a569203c0aa34bbe52c2e8c87e75f6f75234c13ec8f55f9c4b2071e77192a5
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22f78a3d01a087ad9581ae788cea7aed61e2f7870b76c21e32f3eda522f70991
3
+ size 5304