MERaLiON-AudioLLM-Whisper-SEA-LION / processing_meralion.py
Yingxu He
Upload processing_meralion.py with huggingface_hub
a3e4a80 verified
"""Processor class for MERaLiON."""
from typing import List, Optional, Union
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput
# copied from transformers.models.qwen2_audio.processing_qwen2_audio.Qwen2AudioProcessor
class MERaLiONProcessor(ProcessorMixin):
r"""
Constructs a MERaLiON processor which wraps a whisper feature extractor and a gemma tokenizer into a single processor.
[`MERaLiONProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`GemmaTokenizer`]. See the
[`~MERaLiONProcessor.__call__`] and [`~MERaLiONProcessor.decode`] for more information.
Args:
feature_extractor ([`WhisperFeatureExtractor`], *optional*):
The feature extractor is a required input.
tokenizer ([`GemmaTokenizer`], *optional*):
The tokenizer is a required input.
chat_template (`Optional[str]`, *optional*):
The Jinja template to use for formatting the conversation. If not provided, the default chat template
is used.
"""
attributes = ["feature_extractor", "tokenizer"]
feature_extractor_class = "WhisperFeatureExtractor"
tokenizer_class = "GemmaTokenizer"
valid_kwargs = [
"fixed_speech_embeds_length",
"speech_token_index",
"time_duration_limit",
"do_normalize"
]
def __init__(
self,
feature_extractor=None,
tokenizer=None,
fixed_speech_embeds_length=100,
speech_token_index=255999,
time_duration_limit=-1,
do_normalize=True
):
self.fixed_speech_embeds_length = fixed_speech_embeds_length
self.speech_token_index = speech_token_index
self.time_duration_limit = time_duration_limit
self.do_normalize = do_normalize
super().__init__(feature_extractor, tokenizer)
self.speech_token = self.tokenizer.added_tokens_decoder[self.speech_token_index].content
def _process_text(self, text):
target_string = self.speech_token * self.fixed_speech_embeds_length
if isinstance(text, list) or isinstance(text, tuple):
pieces = [item.replace(self.speech_token, target_string) for item in text]
return pieces
return text.replace(self.speech_token, target_string)
def _slice_audios(self, audios, time_duration_limit, sampling_rate):
if time_duration_limit <= 0:
return audios
slice_length = time_duration_limit * sampling_rate
if isinstance(audios, np.ndarray) and audios.ndim == 2:
return audios[:, :slice_length]
if isinstance(audios, np.ndarray) and audios.ndim == 1:
return audios[:slice_length]
if isinstance(audios, list):
return [audio[:slice_length] for audio in audios]
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audios: Union[np.ndarray, List[np.ndarray]] = None,
padding: Union[bool, str, PaddingStrategy] = True,
sampling_rate: Optional[int] = None,
time_duration_limit: Optional[int] = None,
do_normalize: Optional[bool] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
and `kwargs` arguments to GemmaTokenizer's [`~GemmaTokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
audios (`np.ndarray`, `List[np.ndarray]`):
The audio or batch of audios to be prepared. Each audio can be a NumPy array.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
sampling_rate (`int`, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
time_duration_limit (`int`, defaults -1):
The max input time duration in seconds.
do_normalize (`bool`, defaults to `True`):
Whether or not to zero-mean unit-variance normalize the input.
Normalizing can help to significantly improve the performance of the model.
"""
if text is None:
raise ValueError("You need to specify either a `text` input to process.")
if sampling_rate is None:
sampling_rate = self.feature_extractor.sampling_rate
if time_duration_limit is None:
time_duration_limit = self.time_duration_limit
if do_normalize is None:
do_normalize = self.do_normalize
inputs_dict = {}
text = self._process_text(text)
text_input = self.tokenizer(
text=text,
return_tensors="pt",
add_special_tokens=False,
return_attention_mask=True,
padding=padding,
**kwargs
)
inputs_dict["input_ids"] = text_input.input_ids
inputs_dict["attention_mask"] = text_input.attention_mask
if audios is not None:
audios = self._slice_audios(audios, time_duration_limit, sampling_rate)
audio_inputs = self.feature_extractor(
audios,
sampling_rate=sampling_rate,
return_tensors="pt",
return_attention_mask=True,
padding="max_length",
do_normalize=self.do_normalize,
**kwargs
)
audio_inputs["feature_attention_mask"] = audio_inputs.pop(
"attention_mask"
) # rename attention_mask to prevent conflicts later on
inputs_dict.update(audio_inputs)
return BatchFeature(data={**inputs_dict})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names + ["feature_attention_mask"]))