|
"""Processor class for MERaLiON.""" |
|
|
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput |
|
|
|
|
|
|
|
class MERaLiONProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a MERaLiON processor which wraps a whisper feature extractor and a gemma tokenizer into a single processor. |
|
|
|
[`MERaLiONProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`GemmaTokenizer`]. See the |
|
[`~MERaLiONProcessor.__call__`] and [`~MERaLiONProcessor.decode`] for more information. |
|
|
|
Args: |
|
feature_extractor ([`WhisperFeatureExtractor`], *optional*): |
|
The feature extractor is a required input. |
|
tokenizer ([`GemmaTokenizer`], *optional*): |
|
The tokenizer is a required input. |
|
chat_template (`Optional[str]`, *optional*): |
|
The Jinja template to use for formatting the conversation. If not provided, the default chat template |
|
is used. |
|
""" |
|
|
|
attributes = ["feature_extractor", "tokenizer"] |
|
feature_extractor_class = "WhisperFeatureExtractor" |
|
tokenizer_class = "GemmaTokenizer" |
|
valid_kwargs = [ |
|
"fixed_speech_embeds_length", |
|
"speech_token_index", |
|
"time_duration_limit", |
|
"do_normalize" |
|
] |
|
|
|
def __init__( |
|
self, |
|
feature_extractor=None, |
|
tokenizer=None, |
|
fixed_speech_embeds_length=100, |
|
speech_token_index=255999, |
|
time_duration_limit=-1, |
|
do_normalize=True |
|
): |
|
self.fixed_speech_embeds_length = fixed_speech_embeds_length |
|
self.speech_token_index = speech_token_index |
|
self.time_duration_limit = time_duration_limit |
|
self.do_normalize = do_normalize |
|
|
|
super().__init__(feature_extractor, tokenizer) |
|
|
|
self.speech_token = self.tokenizer.added_tokens_decoder[self.speech_token_index].content |
|
|
|
def _process_text(self, text): |
|
target_string = self.speech_token * self.fixed_speech_embeds_length |
|
if isinstance(text, list) or isinstance(text, tuple): |
|
pieces = [item.replace(self.speech_token, target_string) for item in text] |
|
return pieces |
|
return text.replace(self.speech_token, target_string) |
|
|
|
def _slice_audios(self, audios, time_duration_limit, sampling_rate): |
|
if time_duration_limit <= 0: |
|
return audios |
|
|
|
slice_length = time_duration_limit * sampling_rate |
|
if isinstance(audios, np.ndarray) and audios.ndim == 2: |
|
return audios[:, :slice_length] |
|
|
|
if isinstance(audios, np.ndarray) and audios.ndim == 1: |
|
return audios[:slice_length] |
|
|
|
if isinstance(audios, list): |
|
return [audio[:slice_length] for audio in audios] |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
audios: Union[np.ndarray, List[np.ndarray]] = None, |
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
sampling_rate: Optional[int] = None, |
|
time_duration_limit: Optional[int] = None, |
|
do_normalize: Optional[bool] = None, |
|
**kwargs, |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` |
|
and `kwargs` arguments to GemmaTokenizer's [`~GemmaTokenizer.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to |
|
WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring |
|
of the above two methods for more information. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
audios (`np.ndarray`, `List[np.ndarray]`): |
|
The audio or batch of audios to be prepared. Each audio can be a NumPy array. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
sampling_rate (`int`, defaults to 16000): |
|
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). |
|
time_duration_limit (`int`, defaults -1): |
|
The max input time duration in seconds. |
|
do_normalize (`bool`, defaults to `True`): |
|
Whether or not to zero-mean unit-variance normalize the input. |
|
Normalizing can help to significantly improve the performance of the model. |
|
""" |
|
|
|
if text is None: |
|
raise ValueError("You need to specify either a `text` input to process.") |
|
if sampling_rate is None: |
|
sampling_rate = self.feature_extractor.sampling_rate |
|
if time_duration_limit is None: |
|
time_duration_limit = self.time_duration_limit |
|
if do_normalize is None: |
|
do_normalize = self.do_normalize |
|
|
|
inputs_dict = {} |
|
|
|
text = self._process_text(text) |
|
|
|
text_input = self.tokenizer( |
|
text=text, |
|
return_tensors="pt", |
|
add_special_tokens=False, |
|
return_attention_mask=True, |
|
padding=padding, |
|
**kwargs |
|
) |
|
|
|
inputs_dict["input_ids"] = text_input.input_ids |
|
inputs_dict["attention_mask"] = text_input.attention_mask |
|
|
|
if audios is not None: |
|
audios = self._slice_audios(audios, time_duration_limit, sampling_rate) |
|
|
|
audio_inputs = self.feature_extractor( |
|
audios, |
|
sampling_rate=sampling_rate, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding="max_length", |
|
do_normalize=self.do_normalize, |
|
**kwargs |
|
) |
|
audio_inputs["feature_attention_mask"] = audio_inputs.pop( |
|
"attention_mask" |
|
) |
|
inputs_dict.update(audio_inputs) |
|
|
|
return BatchFeature(data={**inputs_dict}) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to GemmaTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to GemmaTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
feature_extractor_input_names = self.feature_extractor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names + ["feature_attention_mask"])) |