File size: 7,522 Bytes
ffb4d4a
 
 
 
7b43220
ebde020
 
 
 
 
 
 
 
 
 
 
7b43220
ebde020
 
 
 
 
 
 
 
b66d4d1
 
 
ebde020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
---
# Model Card for Xylaria-1.4-smol

## Model Details

### Model Description

**Xylaria-1.4-smol** is a highly compact Recurrent Neural Network (RNN) with just **1 MB of storage** and **2 million parameters**. Designed for efficiency, this model represents a breakthrough in lightweight neural network architecture, optimized for resource-constrained environments.

- **Developed by:** Sk Md Saad Amin
- **Model type:** Recurrent Neural Network (RNN)
- **Parameters:** 2 million (approx)
- **Storage Size:** 1 MB
- **Language(s):** English
- **License:** Apache-2.0


### Direct Use

Xylaria-1.4-smol is ideal for:
- Research
- Education
- Hobby

### Downstream Use

The model can be fine-tuned for various tasks such as:
- Lightweight text generation
- Simple sequence prediction
- Embedded system applications
- Educational demonstrations of efficient neural network design

### Out-of-Scope Use

- High-complexity natural language processing tasks
- Applications requiring extensive computational resources
- Tasks demanding state-of-the-art accuracy in complex domains
- It doesn't shine in tasks that are very heavy as this is made for educational and research purposes only
## Bias, Risks, and Limitations

- Limited capacity due to compact design
- Potential performance trade-offs for complexity
- May not perform as well as larger models in nuanced tasks
- Has extremely small vocab size of 108 

### Recommendations

- Carefully evaluate performance for specific use cases
- Consider model limitations in critical applications
- Potential for transfer learning and fine-tuning

### Model Architecture and Objective

- **Architecture:** Compact Recurrent Neural Network
- **Objective:** Efficient sequence processing
- **Key Features:** 
  - Minimal parameter count
  - Reduced storage footprint
  - Low computational requirements


#### Hardware
- Suitable for:
  - Microcontrollers
  - Mobile devices
  - Edge computing platforms

#### Software
- Compatible with:
  - TensorFlow Lite
  - PyTorch Mobile

## Citation (If you find my work helpful, please consider giving a cite)

**BibTeX:**
```bibtex
@misc{xylaria2024smol,
  title={Xylaria-1.4-smol: A Compact Efficient RNN},
  author={[Your Name]},
  year={2024}
}
```
## One Can include the xylaria code like this 
```python 
import torch
import torch.nn as nn

class XylariaSmolRNN(nn.Module):
    def __init__(self, config):
        super(XylariaSmolRNN, self).__init__()
        
        
        self.vocab_size = config['vocab_size']
        self.embedding_dim = config['embedding_dim']
        self.hidden_dim = config['hidden_dim']
        self.num_layers = config['num_layers']
        self.char_to_idx = config['char_to_idx']
        
        
        self.embedding = nn.Embedding(
            num_embeddings=self.vocab_size, 
            embedding_dim=self.embedding_dim,
            padding_idx=self.char_to_idx['<PAD>']
        )
        
        
        self.rnn = nn.LSTM(
            input_size=self.embedding_dim, 
            hidden_size=self.hidden_dim, 
            num_layers=self.num_layers,
            batch_first=True
        )
        
        
        self.fc = nn.Linear(self.hidden_dim, self.vocab_size)
        
        
        self.dropout = nn.Dropout(0.3)

    def forward(self, x):
        
        embedded = self.embedding(x)
        
        
        rnn_out, (hidden, cell) = self.rnn(embedded)
        
        
        rnn_out = self.dropout(rnn_out)
        
        
        output = self.fc(rnn_out)
        
        return output, (hidden, cell)

def demonstrate_xylaria_model():
    
    model_config = {
        "vocab_size": 108,
        "embedding_dim": 50,
        "hidden_dim": 128,
        "num_layers": 2,
        "char_to_idx": {" ": 1, "!": 2, "\"": 3, "#": 4, "$": 5, "%": 6, "&": 7, "'": 8, "(": 9, ")": 10, "*": 11, "+": 12, ",": 13, "-": 14, ".": 15, "/": 16, "0": 17, "1": 18, "2": 19, "3": 20, "4": 21, "5": 22, "6": 23, "7": 24, "8": 25, "9": 26, ":": 27, ";": 28, "<": 29, "=": 30, ">": 31, "?": 32, "A": 33, "B": 34, "C": 35, "D": 36, "E": 37, "F": 38, "G": 39, "H": 40, "I": 41, "J": 42, "K": 43, "L": 44, "M": 45, "N": 46, "O": 47, "P": 48, "Q": 49, "R": 50, "S": 51, "T": 52, "U": 53, "V": 54, "W": 55, "X": 56, "Y": 57, "Z": 58, "[": 59, "\\": 60, "]": 61, "^": 62, "_": 63, "a": 64, "b": 65, "c": 66, "d": 67, "e": 68, "f": 69, "g": 70, "h": 71, "i": 72, "j": 73, "k": 74, "l": 75, "m": 76, "n": 77, "o": 78, "p": 79, "q": 80, "r": 81, "s": 82, "t": 83, "u": 84, "v": 85, "w": 86, "x": 87, "y": 88, "z": 89, "{": 90, "}": 91, "°": 92, "²": 93, "à": 94, "á": 95, "æ": 96, "é": 97, "í": 98, "ó": 99, "ö": 100, "–": 101, "'": 102, "'": 103, """: 104, """: 105, "…": 106, "<PAD>": 0, "<UNK>": 107}
    }

    
    model = XylariaSmolRNN(model_config)

    
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    
    print(f"Total Parameters: {total_params}")
    print(f"Trainable Parameters: {trainable_params}")
    print(f"Model Size Estimate: {total_params * 4 / 1024 / 1024:.2f} MB")

    
    batch_size = 1
    sequence_length = 20
    x = torch.randint(0, model_config['vocab_size'], (batch_size, sequence_length))
    
    
    with torch.no_grad():
        output, (hidden, cell) = model(x)
        print("Model Output Shape:", output.shape)
        print("Hidden State Shape:", hidden.shape)
        print("Cell State Shape:", cell.shape)

    
    try:
        
        scripted_model = torch.jit.script(model)
        scripted_model.save("xylaria_smol_model.pt")
        print("Model exported for deployment")
    except Exception as e:
        print(f"Export failed: {e}")

    
    def generate_text(model, start_char, max_length=100):
        
        current_char = torch.tensor([[model.char_to_idx.get(start_char, model.char_to_idx['<UNK>'])]])
        
        
        hidden = None
        generated_text = [start_char]

        for _ in range(max_length - 1):
            with torch.no_grad():
                
                embedded = model.embedding(current_char)
                if hidden is None:
                    rnn_out, (hidden, cell) = model.rnn(embedded)
                else:
                    rnn_out, (hidden, cell) = model.rnn(embedded, (hidden, cell))
                
               
                output = model.fc(rnn_out)
                
                
                probabilities = torch.softmax(output[0, -1], dim=0)
                next_char_idx = torch.multinomial(probabilities, 1).item()
                
                
                idx_to_char = {idx: char for char, idx in model.char_to_idx.items()}
                next_char = idx_to_char.get(next_char_idx, '<UNK>')
                
                generated_text.append(next_char)
                current_char = torch.tensor([[next_char_idx]])

                if next_char == '<UNK>':
                    break

        return ''.join(generated_text)

    
    print("\nText Generation Example:")
    generated = generate_text(model, 'A')
    print(generated)

if __name__ == "__main__":
    demonstrate_xylaria_model()
```
PS: THE CODE MY BE A BIT WRONG SO, ADJUST ACCORDINGLY
## More Information

Xylaria-1.4-smol represents a significant step towards ultra-efficient neural network design, demonstrating that powerful machine learning can be achieved with minimal computational resources.