LLMJapan commited on
Commit
0cec7e2
·
verified ·
1 Parent(s): 268485d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -69
README.md CHANGED
@@ -1,8 +1,9 @@
1
  ---
 
 
2
  license: cc-by-nc-4.0
3
  language:
4
  - en
5
- pipeline_tag: text-generation
6
  tags:
7
  - nvidia
8
  - AceInstruct
@@ -10,17 +11,48 @@ tags:
10
  - math
11
  - general_domain
12
  - instruct_model
13
- - pytorch
14
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- ## Introduction
17
- We introduce AceInstruct, a family of advanced SFT models for coding, mathematics, and general-purpose tasks. The AceInstruct family, which includes AceInstruct-1.5B, 7B, and 72B, is <b>Improved using Qwen</b>.
18
- These models are fine-tuned on Qwen2.5-Base using [general SFT datasets](https://huggingface.co/datasets/nvidia/AceMath-Instruct-Training-Data). These same datasets are also used in the training of [AceMath-Instruct](https://huggingface.co/nvidia/AceMath-72B-Instruct). Different from AceMath-Instruct which is specialized for math questions, AceInstruct is versatile and can be applied to a wide range of domains. Benchmark evaluations across coding, mathematics, and general knowledge tasks demonstrate that AceInstruct delivers performance comparable to Qwen2.5-Instruct.
19
 
20
- For more information about AceInstruct, check our [website](https://research.nvidia.com/labs/adlr/acemath/) and [paper](https://arxiv.org/abs/2412.15084).
 
 
 
21
 
 
 
 
 
 
22
 
23
  ## Benchmark Results
 
24
  | | Qwen2.5-1.5B-Instruct | AceInstruct-1.5B | Qwen2.5-7B-Instruct | AceInstruct-7B | Qwen2.5-72B-Instruct | AceInstruct-72B |
25
  | --------- |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
26
  | HumanEval | 61.60 | 73.17 | 84.80 | 85.37 | 86.60 | 89.63 |
@@ -31,68 +63,10 @@ For more information about AceInstruct, check our [website](https://research.nvi
31
  | MMLU Pro | 32.40 | 33.78 | 56.30 | 54.50 | 71.10 | 66.10 |
32
  | Average | 57.33 | 61.94 | 76.99 | 76.40 | 84.91 | 84.02 |
33
 
34
- We compare AceInstruct to Qwen2.5-Instruct across coding, mathematics, and general knowledge tasks. We find that AceInstruct-1.5B outperforms Qwen2.5-1.5B-Instruct (61.94 vs. 57.33), while AceInstruct-7B and AceInstruct-72B perform similarly to Qwen2.5-7B-Instruct and Qwen2.5-72B-Instruct.
35
-
36
-
37
- ## All Resources
38
- ### AceMath Instruction Models
39
- - [AceMath-1.5B-Instruct](https://huggingface.co/nvidia/AceMath-1.5B-Instruct), [AceMath-7B-Instruct](https://huggingface.co/nvidia/AceMath-7B-Instruct), [AceMath-72B-Instruct](https://huggingface.co/nvidia/AceMath-72B-Instruct)
40
 
41
- ### AceMath Reward Models
42
- - [AceMath-7B-RM](https://huggingface.co/nvidia/AceMath-7B-RM), [AceMath-72B-RM](https://huggingface.co/nvidia/AceMath-72B-RM)
43
 
44
- ### Evaluation & Training Data
45
- - [AceMath-RewardBench](https://huggingface.co/datasets/nvidia/AceMath-RewardBench), [AceMath-Instruct Training Data](https://huggingface.co/datasets/nvidia/AceMath-Instruct-Training-Data), [AceMath-RM Training Data](https://huggingface.co/datasets/nvidia/AceMath-RM-Training-Data)
46
-
47
- ### General Instruction Models
48
- - [AceInstruct-1.5B](https://huggingface.co/nvidia/AceInstruct-1.5B), [AceInstruct-7B](https://huggingface.co/nvidia/AceInstruct-7B), [AceInstruct-72B](https://huggingface.co/nvidia/AceInstruct-72B)
49
-
50
-
51
- ## How to use
52
- ```python
53
- from transformers import AutoModelForCausalLM, AutoTokenizer
54
-
55
- model_name = "AceInstruct-72B"
56
- tokenizer = AutoTokenizer.from_pretrained(model_name)
57
- model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
58
-
59
- prompt = "Tell me something about artificial intelligence."
60
- messages = [{"role": "user", "content": prompt}]
61
-
62
- text = tokenizer.apply_chat_template(
63
- messages,
64
- tokenize=False,
65
- add_generation_prompt=True
66
- )
67
- model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
68
-
69
- generated_ids = model.generate(
70
- **model_inputs,
71
- max_new_tokens=1024
72
- )
73
- generated_ids = [
74
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
75
- ]
76
-
77
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
78
- ```
79
-
80
-
81
- ## Correspondence to
82
- Zihan Liu ([email protected]), Yang Chen ([email protected]), Wei Ping ([email protected])
83
-
84
-
85
- ## Citation
86
- If you find our work helpful, we’d appreciate it if you could cite us.
87
- <pre>
88
- @article{acemath2024,
89
- title={AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling},
90
- author={Liu, Zihan and Chen, Yang and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
91
- journal={arXiv preprint},
92
- year={2024}
93
- }
94
- </pre>
95
-
96
-
97
- ## License
98
- All models in the AceInstruct family are for non-commercial use only, subject to [Terms of Use](https://openai.com/policies/row-terms-of-use/) of the data generated by OpenAI. We put the AceInstruct models under the license of [Creative Commons Attribution: Non-Commercial 4.0 International](https://spdx.org/licenses/CC-BY-NC-4.0).
 
1
  ---
2
+ quantized_by: LLMJapan
3
+ pipeline_tag: text-generation
4
  license: cc-by-nc-4.0
5
  language:
6
  - en
 
7
  tags:
8
  - nvidia
9
  - AceInstruct
 
11
  - math
12
  - general_domain
13
  - instruct_model
14
+ base_model: nvidia/AceInstruct-72B
15
  ---
16
+ ## Exllama v2 Quantizations of AceInstruct-72B by nvidia
17
+
18
+ Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.2.8">turboderp's ExLlamaV2 v0.2.8</a> for quantization.
19
+
20
+ Original model: https://huggingface.co/nvidia/AceInstruct-72B
21
+
22
+ Quantization Command Example for creating other bpw quantization
23
+ ```
24
+ cd {your git clone directory}
25
+ python convert.py -i {path to}/AceInstruct-72B -o {path to}/AceInstruct-72B/workingdir -cf {path to}/AceInstruct-72B/AceInstruct-72B-3bpw -b 3.0
26
+ ```
27
+
28
+ ## Prompt format
29
+
30
+ ```
31
+ <|im_start|>system
32
+ {system_prompt}<|im_end|>
33
+ <|im_start|>user
34
+ {prompt}<|im_end|>
35
+ <|im_start|>assistant
36
+ ```
37
+
38
+ ## How to add your system prompt
39
 
40
+ Copy the following json and replace the "You are AceInstruct developed by NVIDIA. You are helpful assistant." sentence with your original system prompt.
41
+ The default tokenizer_config.json does not have system prompt.
 
42
 
43
+ tokenizer_config.json
44
+ ```
45
+ "chat_template": "{{- '<|im_start|>system\\nYou are AceInstruct developed by NVIDIA. You are helpful assistant.<|im_end|>\\n' }}\n {%- for message in messages %}\n{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}\n{%- endfor %}\n{%- if add_generation_prompt %}\n{{- '<|im_start|>assistant\n' }}\n{%- endif %}\n",
46
+ ```
47
 
48
+ ## File information
49
+
50
+ | quantization type | file size |
51
+ | ----------------------- | ----------: |
52
+ | 3.0bpw | 27.8 GiB |
53
 
54
  ## Benchmark Results
55
+
56
  | | Qwen2.5-1.5B-Instruct | AceInstruct-1.5B | Qwen2.5-7B-Instruct | AceInstruct-7B | Qwen2.5-72B-Instruct | AceInstruct-72B |
57
  | --------- |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
58
  | HumanEval | 61.60 | 73.17 | 84.80 | 85.37 | 86.60 | 89.63 |
 
63
  | MMLU Pro | 32.40 | 33.78 | 56.30 | 54.50 | 71.10 | 66.10 |
64
  | Average | 57.33 | 61.94 | 76.99 | 76.40 | 84.91 | 84.02 |
65
 
66
+ ## Credits
 
 
 
 
 
67
 
68
+ Thanks to NVIDIA team.
 
69
 
70
+ ---
71
+ license: cc-by-nc-4.0
72
+ ---