{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a291af37740>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a291af377e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a291af37880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a291af37920>", "_build": "<function ActorCriticPolicy._build at 0x7a291af379c0>", "forward": "<function ActorCriticPolicy.forward at 0x7a291af37a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a291af37b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a291af37ba0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a291af37c40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a291af37ce0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a291af37d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a291af37e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a291b098100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739672700730465871, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOBlF75pJC68lSnSOgD09TgH96A9OyMQugAAgD8AAIA/JmIJvinnSTsI/do7NRoCuu5Y97wmHuc6AACAPwAAgD/A6MG9KUhiurRXkblD29q0F+2yOqGcpTgAAIA/AACAP5pxzbyPjl26UlpQObyhdDSeXKu45jt0uAAAgD8AAIA/pnIHvoV8p7sGG9W7NQszulki/Dw7WRU7AACAPwAAgD+z7Sa94dC5upK+tTe6itoy+S8ROrBWz7YAAIA/AACAP0aNRj7Pyng+biR/vsvMqb6AHeC9xmSNPAAAAAAAAAAAxuRkPlBL/D5k47i+6SXmvh2n5b1aTJo7AAAAAAAAAACa4fs74RSUum0K57Ye/NGxoSaot0vJBjYAAIA/AACAPzMPQzypIYU/cw5suyTE6L7az5c9WK1cPQAAAAAAAAAATZnNPXvsg7pJf4G8RTEVtinyA7suHIk1AAAAAAAAgD9AWaq9Pb8uu8IQgTyCRoU897nzvILZZT0AAAAAAACAP7MTqj205b0/0gCLPo6ifL49Zas9CwgYPgAAAAAAAAAALXgZvg8ylT9M0JW+2tsIv8oKS77a6+E8AAAAAAAAAADNFyW9SAezurU3bTunBpk4lEfWuQvgC7oAAIA/AACAPxN0Lb4zz5E/wrrLvq31Dr8wsE2+ihfgvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+vW8yvcJuMAWyUTRMCjAF0lEdAloKGIj4YanV9lChoBkdAZf5UZNwiq2gHTegDaAhHQJaDBKJ2t+11fZQoaAZHQGMC/mDDjzZoB03oA2gIR0CWgxxBE8aGdX2UKGgGR0BgFIxesxO+aAdN6ANoCEdAloSZA+pwTHV9lChoBkdAYxUr3Cbc5GgHTegDaAhHQJaHC9du5z51fZQoaAZHQGIg4YR/ViFoB03oA2gIR0CWiJ938n/ldX2UKGgGR0BxP31mJ3xGaAdNdgNoCEdAlor1bRneznV9lChoBkdAZLKPS2H+ImgHTegDaAhHQJaN9fpljEx1fZQoaAZHQGaCwnQY1pFoB03oA2gIR0CWj0qASWZ7dX2UKGgGR0BwqIB1cMVlaAdNHQJoCEdAlpFR15jYqXV9lChoBkdAcIMOCXhOxmgHTaYDaAhHQJaYlY7q6e51fZQoaAZHQHI7lEVnEl5oB00gAmgIR0CWnYnh86V/dX2UKGgGR0BiOSp97WupaAdN6ANoCEdAlp2LeANG3HV9lChoBkdAZQi9Mbm2cGgHTegDaAhHQJaio7gbZOB1fZQoaAZHQGJjhBzFMqVoB03oA2gIR0CWo829tdiVdX2UKGgGR0BklbjzZpSKaAdN6ANoCEdAlqQdBjWkJ3V9lChoBkdAchCmUGFBY2gHTR4CaAhHQJanyMIeHSF1fZQoaAZHQHEkGs/6frdoB00VA2gIR0CWqz9mYjSodX2UKGgGR0BwhnmV7hNuaAdNAQNoCEdAlqveaa1CxHV9lChoBkfAIELGipNsWWgHS8FoCEdAlr6Kews5GXV9lChoBkdAcJy2K2rn1WgHTV8DaAhHQJbALHYHxBp1fZQoaAZHQGSG0rkKeCloB03oA2gIR0CWwIpHI6sAdX2UKGgGR0Bjf8JD3M6jaAdN6ANoCEdAlsttMGorF3V9lChoBkdAYxkC7sfJWGgHTegDaAhHQJbOEcxTKkl1fZQoaAZHQGbH3Tuv2XdoB03oA2gIR0CW1cJmNBGAdX2UKGgGR0BkSD0Bfa6CaAdN6ANoCEdAltdbGecx03V9lChoBkdAYRIcDr7fpGgHTegDaAhHQJbZe/etSyd1fZQoaAZHQGDp1gYxcmloB03oA2gIR0CW4Bp8neBQdX2UKGgGR0Bx7+5e7cwhaAdNUgJoCEdAluB0Qsf7rXV9lChoBkdAcI1neSB9TmgHTVsCaAhHQJbggHdGiHt1fZQoaAZHQHEvJzLfUF1oB02OAmgIR0CW4T5xBE8adX2UKGgGR0BjZ8Q7LdN4aAdN6ANoCEdAluNVAeJYT3V9lChoBkdAYDrlum78N2gHTegDaAhHQJbjVjZteld1fZQoaAZHQG4kvMB6rvNoB00rAWgIR0CW46TfzjFRdX2UKGgGR0BvuAnv2GqQaAdN/gJoCEdAluQTx0+1SnV9lChoBkdAY7WQA+6iCmgHTegDaAhHQJbmEo/iYLN1fZQoaAZHQGO4BnSOR1ZoB03oA2gIR0CW5ufFJg9edX2UKGgGR0Bk3cM7U5MlaAdN6ANoCEdAlupHW8RL9XV9lChoBkdATMi/wiJO32gHS8doCEdAlur+4b0e2nV9lChoBkdAYNl4j8k2P2gHTegDaAhHQJbuH3Zf2K51fZQoaAZHQHHSqLwWnCRoB02lAWgIR0CXBVoCdSVGdX2UKGgGR0Bx3a4Cp3otaAdNCQNoCEdAlwXOOsDGLnV9lChoBkdAbR6ALiMo+mgHS/1oCEdAlwoh9LHuJHV9lChoBkdAZdyYvWYnfGgHTegDaAhHQJcPG19fCyh1fZQoaAZHQHEfeJUHY6JoB01YAmgIR0CXEZ0iyIHkdX2UKGgGR0BwgVKEnLJTaAdNVgFoCEdAlxIRUJfICHV9lChoBkdAcVStbs4T9WgHTegBaAhHQJcUyf/WDpV1fZQoaAZHQGUzyFoL5RFoB03oA2gIR0CXF9TisGPgdX2UKGgGR0A0ucMVk+X7aAdL0mgIR0CXGMPszEaVdX2UKGgGR0Bup4dbPhQ4aAdNLQNoCEdAlxjntF8XvnV9lChoBkdAZWPWdVea8mgHTegDaAhHQJcZzr2QGOd1fZQoaAZHQDlFZQpF1CBoB0u5aAhHQJcaQ8DB/I91fZQoaAZHQFHJA2AG0NVoB0vSaAhHQJceHOObRWt1fZQoaAZHQHGUbq+rU9ZoB00yAmgIR0CXH7IQe3hGdX2UKGgGR0Bm1WTcIqsmaAdN6ANoCEdAlyAZDzAerHV9lChoBkdAYU+0ngHeJ2gHTegDaAhHQJcgXnbItDl1fZQoaAZHQFBHIl+mWMVoB0u/aAhHQJchPx2B8QZ1fZQoaAZHQGWU6qKgqVhoB03oA2gIR0CXI3QKa5PNdX2UKGgGR0BmK09wFTvRaAdN6ANoCEdAlyP07nxJ/XV9lChoBkdASsUyk9ECvGgHS8FoCEdAlyYTZDiOvXV9lChoBkdAYBhYf4h2XGgHTegDaAhHQJcmLkxREWt1fZQoaAZHQGFOJx3mmtRoB03oA2gIR0CXJxOu7pV0dX2UKGgGR0A2fOP/7zkIaAdL3mgIR0CXKJV+I/JOdX2UKGgGR0BDCXtKIznBaAdL2mgIR0CXKQwQlKK6dX2UKGgGR0BxLro4dZJTaAdN+wFoCEdAly8HaWX1J3V9lChoBkdAOdYKIBRyfmgHS7xoCEdAlzAQcHWz4XV9lChoBkdAcSwgiNbTt2gHTcADaAhHQJcyQTBZZB91fZQoaAZHQHHLTc6/7BRoB01CAWgIR0CXMq5Xlr/LdX2UKGgGR0BwESl3yI56aAdNggNoCEdAl0Sq8cuJ13V9lChoBkdAchhJoCdSVGgHTXcCaAhHQJdFeN+9all1fZQoaAZHQG+7Si/O+qRoB01aA2gIR0CXSPZ75VOsdX2UKGgGR0Bv5Qj4YaYNaAdNKAJoCEdAl0m6bayrxXV9lChoBkdAbmzB0IToMmgHTesCaAhHQJdMRxXGOuJ1fZQoaAZHQHC8ZWJaaCtoB02WAWgIR0CXTGFqSHM2dX2UKGgGR0BuEs2tMfzSaAdN8AFoCEdAl01rHU+cIHV9lChoBkdAcVzuR9w3pGgHTTMBaAhHQJdNi7Ackt51fZQoaAZHQHBqyMUAT7FoB01FAWgIR0CXUoJYT0xudX2UKGgGR0ByDeRW912aaAdNcwJoCEdAl1K6ZML4OHV9lChoBkdAcRjZLqUu+WgHTacBaAhHQJdV/yxzJZJ1fZQoaAZHQGkETF2mpERoB03oA2gIR0CXVn16mfoSdX2UKGgGR0Bw/rOs1baAaAdL92gIR0CXVrCSA6MjdX2UKGgGR0BxL2JN0vGqaAdNPAFoCEdAl1bnLaEi+3V9lChoBkdAbp9SIgvDg2gHTTMBaAhHQJdZUs189fV1fZQoaAZHQHHgdRiw0O5oB03NAmgIR0CXWfy08eS0dX2UKGgGR0BwNYz3yqdZaAdNewJoCEdAl1y6m0mdAnV9lChoBkdAYn3zDGcWkGgHTegDaAhHQJdegIUrTYx1fZQoaAZHQEjxqeK8+RpoB0u7aAhHQJdfVsN2C/Z1fZQoaAZHQF+NZJkGzKNoB03oA2gIR0CXYfowEhaDdX2UKGgGR0BwlDnp0OmSaAdN7QFoCEdAl2QbzwtrbnV9lChoBkdAbwhMEidJ8WgHTXQBaAhHQJdkPGNrCWN1fZQoaAZHQElFQpnYg7poB0vdaAhHQJdlDZJ04ip1fZQoaAZHQHNODPSlWOpoB01+AmgIR0CXZV7Qb+98dX2UKGgGR0Bvu2+IuXeFaAdNNgFoCEdAl2V3GXHBDXV9lChoBkdAccBF9roGIWgHTbcBaAhHQJdm5lsguAZ1fZQoaAZHQHLNLxy4nWtoB01dAWgIR0CXaTmhM8HOdX2UKGgGR0Bxd9XYDklvaAdNMgFoCEdAl2pNW+49YHV9lChoBkdAZtr544ZMtmgHTegDaAhHQJduOcd5prV1fZQoaAZHQHCdMRcu8K5oB00tAmgIR0CXboXa8Hv+dX2UKGgGR0Bkzr0z0pVkaAdN6ANoCEdAl26HzYmLL3V9lChoBkdAb6GWhysCDGgHTRABaAhHQJduwQf6oEV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |