File size: 1,356 Bytes
b4dadfe
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8a3fd
b4dadfe
 
6e8a3fd
 
 
 
 
 
 
 
 
 
 
 
 
b4dadfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
tags:
- merge
- mergekit
- lazymergekit
---

# Qwen-2.5-base-7b

Qwen-2.5-base-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):

## 🧩 Configuration

```yaml
name: Qwen-2.5-base-7b
merge_method: sce
parameters:
  select_topk: 0.8
  normalize: true
dtype: float32
out_dtype: bfloat16
base_model: trollek/Qwen2.5-7B-CySecButler-v0.1
tokenizer:
  source: base
models:
  - model: fblgit/cybertron-v4-qw7B-MGS
  - model: bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2
  - model: win10/Skuld-Qwen2.5-7B
  - model: Xiaojian9992024/Qwen2.5-7B-MS-Destroyer
  - model: MadeAgents/Hammer2.1-7b
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Jebadiah/Qwen-2.5-base-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```