--- base_model: cointegrated/rubert-tiny2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: lct-rubert-tiny2-ner results: [] --- # lct-rubert-tiny2-ner This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0270 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 38 | 0.1353 | 0.0 | 0.0 | 0.0 | 0.9985 | | No log | 2.0 | 76 | 0.0334 | 0.0 | 0.0 | 0.0 | 0.9985 | | No log | 3.0 | 114 | 0.0270 | 0.0 | 0.0 | 0.0 | 0.9985 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1 - Datasets 2.19.2 - Tokenizers 0.19.1