HyperX-Sentience commited on
Commit
7431787
·
verified ·
1 Parent(s): a331568

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -3
README.md CHANGED
@@ -1,3 +1,88 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - stable-diffusion
5
+ - text-to-image
6
+ - image-generation
7
+ - juggernaut
8
+ - kandooai
9
+ - civitai
10
+ - ai-art
11
+ - diffusion-models
12
+ - art-generation
13
+ - creative-ml
14
+ language:
15
+ - en
16
+ base_model:
17
+ - stable-diffusion-v1-5/stable-diffusion-v1-5
18
+ pipeline_tag: text-to-image
19
+ library_name: diffusers
20
+ ---
21
+
22
+ # Juggernaut Model by KandooAI
23
+
24
+ **Model Overview**
25
+
26
+ The "Juggernaut" model is a cutting-edge text-to-image generation model developed by KandooAI. Leveraging advanced diffusion techniques, this model is designed to produce high-quality, detailed images from textual descriptions, pushing the boundaries of AI-driven art and creativity.
27
+
28
+ **Model Description**
29
+
30
+ - **Developed by**: [KandooAI](https://civitai.com/user/KandooAI)
31
+ - **Model type**: Diffusion-based text-to-image generation
32
+ - **License**: [CreativeML Open RAIL-M](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
33
+ - **Tags**: stable-diffusion, text-to-image, image-generation, juggernaut, kandooai, civitai, ai-art, diffusion-models, art-generation, creative-ml
34
+
35
+ **Intended Use**
36
+
37
+ This model is intended for artists, designers, and AI enthusiasts seeking to generate high-quality images based on textual prompts. It can be used for:
38
+
39
+ - Creating concept art
40
+ - Generating illustrations
41
+ - Exploring creative ideas
42
+ - Enhancing design workflows
43
+
44
+ **Limitations and Biases**
45
+
46
+ Users should be aware of the following limitations:
47
+
48
+ - The model's outputs are highly dependent on the quality and specificity of the input text.
49
+ - It may produce biased or unintended outputs if the input text contains biased or sensitive content.
50
+ - The model is not suitable for generating images intended for medical, legal, or other professional advice.
51
+
52
+ **Training Data**
53
+
54
+ The "Juggernaut" model was trained on a diverse dataset of images and corresponding textual descriptions. The dataset includes a wide range of artistic styles, subjects, and themes to ensure versatility in generated outputs.
55
+
56
+ **Evaluation**
57
+
58
+ The model has undergone rigorous testing to ensure high-quality outputs. Evaluation metrics include:
59
+
60
+ - **Image Quality**: Assessed by human evaluators for clarity, detail, and aesthetic appeal.
61
+ - **Text-Image Relevance**: Measured by the accuracy of the generated image in representing the input text.
62
+
63
+ **How to Use**
64
+
65
+ To generate images using the "Juggernaut" model, follow the example code below:
66
+
67
+ ```python
68
+ from diffusers import StableDiffusionPipeline
69
+
70
+ # Load the Juggernaut model
71
+ model_id = "path_to_juggernaut_model"
72
+ pipe = StableDiffusionPipeline.from_pretrained(model_id)
73
+
74
+ # Generate an image from a text prompt
75
+ prompt = "A futuristic cityscape at sunset"
76
+ image = pipe(prompt).images[0]
77
+
78
+ # Save or display the image
79
+ image.save("generated_image.png")
80
+ ```
81
+
82
+ **Acknowledgments**
83
+
84
+ All credit for the development of the "Juggernaut" model goes to KandooAI. For more information and updates, visit the Civitai model page.
85
+
86
+ **Contact Information**
87
+
88
+ For questions or feedback regarding the "Juggernaut" model, please contact KandooAI through their Civitai profile.