--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer datasets: - offenseval_2020 metrics: - accuracy - f1 - precision - recall model-index: - name: ArabertHateSpeech results: - task: name: Text Classification type: text-classification dataset: name: offenseval_2020 type: offenseval_2020 config: ar split: test args: ar metrics: - name: Accuracy type: accuracy value: 0.9436234263820471 - name: F1 type: f1 value: 0.8571428571428571 - name: Precision type: precision value: 0.8778409090909091 - name: Recall type: recall value: 0.8373983739837398 --- # ArabertHateSpeech This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the offenseval_2020 dataset. It achieves the following results on the evaluation set: - Loss: 0.1829 - Accuracy: 0.9436 - F1: 0.8571 - Precision: 0.8778 - Recall: 0.8374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1799 | 1.0 | 980 | 0.1848 | 0.9299 | 0.8298 | 0.8146 | 0.8455 | | 0.0951 | 2.0 | 1960 | 0.1136 | 0.9398 | 0.8397 | 0.9085 | 0.7805 | | 0.0429 | 3.0 | 2940 | 0.1829 | 0.9436 | 0.8571 | 0.8778 | 0.8374 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3