Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import pandas as pd
|
3 |
+
from xgboost import XGBRegressor
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
import requests
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Fetch data from Facebook API
|
9 |
+
def fetch_data_from_api(query, geo_locations):
|
10 |
+
url = f"https://graph.facebook.com/v17.0/act_597540533213624/targetingsearch"
|
11 |
+
params = {
|
12 |
+
"q": query,
|
13 |
+
"geo_locations[countries]": geo_locations,
|
14 |
+
"access_token": os.getenv('ACCESS_TOKEN')
|
15 |
+
}
|
16 |
+
response = requests.get(url, params=params)
|
17 |
+
if response.status_code == 200:
|
18 |
+
return response.json()
|
19 |
+
else:
|
20 |
+
raise Exception(f"Failed to fetch data from API. Status code: {response.status_code}")
|
21 |
+
|
22 |
+
# Generate synthetic metrics
|
23 |
+
def generate_synthetic_metrics(data):
|
24 |
+
IMPRESSION_RATE = 0.10 # 10% of audience sees the ad
|
25 |
+
CTR = 0.05 # 5% of impressions result in clicks
|
26 |
+
CONVERSION_RATE = 0.02 # 2% of clicks result in conversions
|
27 |
+
CPM = 5 # $5 per 1000 impressions
|
28 |
+
REVENUE_PER_CONVERSION = 50 # $50 per conversion
|
29 |
+
|
30 |
+
data['impressions'] = data['audience_size_lower_bound'] * IMPRESSION_RATE
|
31 |
+
data['clicks'] = data['impressions'] * CTR
|
32 |
+
data['conversions'] = data['clicks'] * CONVERSION_RATE
|
33 |
+
data['ad_spend'] = (data['impressions'] / 1000) * CPM
|
34 |
+
data['revenue'] = data['conversions'] * REVENUE_PER_CONVERSION
|
35 |
+
data['roi'] = (data['revenue'] - data['ad_spend']) / data['ad_spend']
|
36 |
+
|
37 |
+
return data
|
38 |
+
|
39 |
+
# Train and save the model
|
40 |
+
def train_and_save_model():
|
41 |
+
# Fetch data
|
42 |
+
response_data = fetch_data_from_api('Fitness', 'NG')
|
43 |
+
data = pd.DataFrame(response_data['data'])
|
44 |
+
|
45 |
+
# Generate synthetic metrics
|
46 |
+
data = generate_synthetic_metrics(data)
|
47 |
+
|
48 |
+
# Features and target
|
49 |
+
X = data[['ad_spend', 'impressions', 'clicks', 'conversions']]
|
50 |
+
y = data['roi']
|
51 |
+
|
52 |
+
# Train the model
|
53 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
54 |
+
model = XGBRegressor(n_estimators=100, max_depth=3, n_jobs=-1)
|
55 |
+
model.fit(X_train, y_train)
|
56 |
+
|
57 |
+
# Save the model
|
58 |
+
model.save_model('model.json')
|
59 |
+
print("Model saved to 'model.json'.")
|
60 |
+
|
61 |
+
if __name__ == '__main__':
|
62 |
+
train_and_save_model()
|