File size: 3,102 Bytes
7ed3c1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Math-7B
tags:
- generated_from_trainer
model-index:
- name: outputs/qwen_sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0.dev0`
```yaml
base_model: Qwen/Qwen2.5-Math-7B
trust_remote_code: false
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen_25
datasets:
- path: data/train_data
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant", "ai"]
system: ["system"]
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./outputs/qwen_sft
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# wandb_project: huggingface
# wandb_entity: zzzzzaa
# wandb_watch:
# wandb_name: qwen_test
# wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true
gradient_checkpointing: false
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
saves_per_epoch: 1
evals_per_epoch: 0
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
# special_tokens:
# bos_token: "<|im_start|>"
# eos_token: "<|im_end|>"
# pad_token: "<|endoftext|>"
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
```
</details><br>
# outputs/qwen_sft
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|