---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: outputs/Qwen_numina_raft2_orig_eos
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.8.0.dev0`
```yaml
base_model: outputs/Qwen_numina_raft1_orig_eos
trust_remote_code: false
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen_25
datasets:
- path: data/raft_train_iter2_0_10000
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant", "ai"]
system: ["system"]
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./outputs/Qwen_numina_raft2_orig_eos
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# wandb_project: huggingface
# wandb_entity: zzzzzaa
# wandb_watch:
# wandb_name: qwen_test
# wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true
gradient_checkpointing: false
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
saves_per_epoch: 1
evals_per_epoch: 0
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
# special_tokens:
# bos_token: "<|im_start|>"
# eos_token: "<|im_end|>"
# pad_token: "<|endoftext|>"
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
```
# outputs/Qwen_numina_raft2_orig_eos
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0