--- library_name: transformers tags: - generated_from_trainer model-index: - name: outputs/Qwen_numina_raft2_orig_eos results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: outputs/Qwen_numina_raft1_orig_eos trust_remote_code: false load_in_8bit: false load_in_4bit: false strict: false chat_template: qwen_25 datasets: - path: data/raft_train_iter2_0_10000 type: chat_template field_messages: conversations message_field_role: role message_field_content: content roles: user: ["human", "user"] assistant: ["gpt", "assistant", "ai"] system: ["system"] dataset_prepared_path: val_set_size: 0.0 output_dir: ./outputs/Qwen_numina_raft2_orig_eos sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true # wandb_project: huggingface # wandb_entity: zzzzzaa # wandb_watch: # wandb_name: qwen_test # wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: false tf32: true gradient_checkpointing: false gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 saves_per_epoch: 1 evals_per_epoch: 0 debug: weight_decay: 0.01 fsdp: fsdp_config: # special_tokens: # bos_token: "<|im_start|>" # eos_token: "<|im_end|>" # pad_token: "<|endoftext|>" plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true ```

# outputs/Qwen_numina_raft2_orig_eos This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0