Update README.md
Browse files
README.md
CHANGED
@@ -6,26 +6,62 @@ library_name: transformers
|
|
6 |
tags:
|
7 |
- mergekit
|
8 |
- merge
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
The following models were included in the merge:
|
23 |
-
* [Saxo/Linkbricks-Horizon-AI-Japanese-Base-32B](https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Japanese-Base-32B)
|
24 |
-
* [karakuri-ai/karakuri-lm-32b-thinking-2501-exp](https://huggingface.co/karakuri-ai/karakuri-lm-32b-thinking-2501-exp)
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
```yaml
|
31 |
merge_method: slerp
|
@@ -36,5 +72,5 @@ models:
|
|
36 |
parameters:
|
37 |
t: 0.35
|
38 |
dtype: bfloat16
|
39 |
-
name:
|
40 |
```
|
|
|
6 |
tags:
|
7 |
- mergekit
|
8 |
- merge
|
9 |
+
##概要
|
10 |
+
このモデルはQwQのような長文を出力させるために組んだモデルです。
|
11 |
+
Mergeをした後で日本語の事後学習をしています。
|
12 |
|
13 |
+
## 注意
|
14 |
+
このモデルは **長考モデル**ではありません。
|
15 |
+
## How to use
|
16 |
+
```python
|
17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
+
|
19 |
+
model_name = "DataPilot/Arrival-32B-Instruct-v0.5"
|
20 |
+
tokenizer_name = ""
|
21 |
+
|
22 |
+
if tokenizer_name == "":
|
23 |
+
tokenizer_name = model_name
|
24 |
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name,
|
27 |
+
torch_dtype="auto",
|
28 |
+
device_map="auto"
|
29 |
+
)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
31 |
|
32 |
+
prompt = "9.9と9.11はどちらのほうが大きいですか?"
|
33 |
+
messages = [
|
34 |
+
{"role": "system", "content": "あなたは優秀な日本語アシスタントです。問題解決をするために考えた上で回答を行ってください。"},
|
35 |
+
{"role": "user", "content": prompt}
|
36 |
+
]
|
37 |
+
text = tokenizer.apply_chat_template(
|
38 |
+
messages,
|
39 |
+
tokenize=False,
|
40 |
+
add_generation_prompt=True
|
41 |
+
)
|
42 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
43 |
|
44 |
+
generated_ids = model.generate(
|
45 |
+
**model_inputs,
|
46 |
+
max_new_tokens=1024
|
47 |
+
)
|
48 |
+
generated_ids = [
|
49 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
50 |
+
]
|
51 |
+
|
52 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
53 |
+
|
54 |
+
print(response)
|
55 |
+
```
|
56 |
|
57 |
+
## ベンチマーク
|
58 |
+
このモデルはELYZA-task100で4.63をマークしました。(評価にはGroqのllama3-70B-8192を使用しました。)
|
59 |
|
|
|
|
|
|
|
60 |
|
61 |
+
## 謝辞
|
62 |
+
モデルの作成者であるQwenチーム,karakuri_lmチーム,linkbricksチーム、評価モデルの作成者であるmeta社とAPIを公開しているGroq社、計算資源を貸していただいたVOLTMIND社に感謝を申し上げます。
|
63 |
|
64 |
+
## merge config
|
65 |
|
66 |
```yaml
|
67 |
merge_method: slerp
|
|
|
72 |
parameters:
|
73 |
t: 0.35
|
74 |
dtype: bfloat16
|
75 |
+
name: DataPilot/Arrival-32B-Instruct-v0.5
|
76 |
```
|