Daemontatox commited on
Commit
cb3ba73
·
verified ·
1 Parent(s): da6f45e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -56
README.md CHANGED
@@ -72,61 +72,5 @@ The model was fine-tuned using **parameter-efficient techniques**, including:
72
  - **Mathematical & Logical Reasoning**: Can assist in **education**, **problem-solving**, and **automated theorem proving**.
73
  - **Research & Development**: Useful for **scientific research**, **data analysis**, and **language modeling experiments**.
74
 
75
- ### **Deployment**
76
- The model supports **4-bit and 8-bit quantization**, making it **deployable on resource-constrained devices** while maintaining high performance.
77
-
78
- ---
79
-
80
- ## **Limitations & Ethical Considerations**
81
-
82
- ### **Limitations**
83
- - **Bias & Hallucination**: The model may still **generate biased or hallucinated outputs**, especially in **highly subjective** or **low-resource** domains.
84
- - **Computation Requirements**: While optimized, the model **still requires significant GPU resources** for inference at full precision.
85
- - **Context Length Constraints**: Long-context understanding is improved, but **performance may degrade** on extremely long prompts.
86
-
87
- ### **Ethical Considerations**
88
- - **Use responsibly**: The model should not be used for **misinformation**, **deepfake generation**, or **harmful AI applications**.
89
- - **Bias Mitigation**: Efforts have been made to **reduce bias**, but users should **validate outputs** in sensitive applications.
90
-
91
- ---
92
-
93
- ## **How to Use the Model**
94
-
95
- ### **Example Code for Inference**
96
-
97
- ```python
98
- from transformers import AutoModelForCausalLM, AutoTokenizer
99
-
100
- model_name = "Daemontatox/PathFinderAI4.0"
101
-
102
- tokenizer = AutoTokenizer.from_pretrained(model_name)
103
- model = AutoModelForCausalLM.from_pretrained(model_name)
104
-
105
- input_text = "Explain the significance of reinforcement learning in AI."
106
- inputs = tokenizer(input_text, return_tensors="pt")
107
-
108
- output = model.generate(**inputs, max_length=200)
109
- print(tokenizer.decode(output[0], skip_special_tokens=True))
110
-
111
- Using with Unsloth (Optimized LoRA Inference)
112
-
113
- from unsloth import FastAutoModelForCausalLM
114
-
115
- model = FastAutoModelForCausalLM.from_pretrained(model_name,
116
- load_in_4bit=True # Efficient deployment
117
- )
118
-
119
-
120
- ---
121
- ```
122
-
123
- ## Acknowledgments
124
-
125
- Special thanks to:
126
-
127
- **Unsloth AI** for their efficient fine-tuning framework.
128
-
129
- The open-source AI community for continuous innovation.
130
-
131
 
132
  ---
 
72
  - **Mathematical & Logical Reasoning**: Can assist in **education**, **problem-solving**, and **automated theorem proving**.
73
  - **Research & Development**: Useful for **scientific research**, **data analysis**, and **language modeling experiments**.
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ---