merge_method: della_linear # Consider if the 'della_linear' merge method is optimal based on the latest benchmarks. Would a different method better balance task priorities? base_model: CultriX/Qwen2.5-14B-Wernickev3 dtype: bfloat16 parameters: epsilon: 0.01 # Epsilon is set for fine-grain precision. Consider validating this epsilon value against current benchmark results to ensure it effectively fine-tunes model behaviors and aligns with the intended benchmarks. lambda: 1.5 # Optimized for significant model contributions. Double-check if this value prioritizes the right model strengths effectively. normalize: true smoothing_factor: 0.08 # Double-check if this smoothing factor sufficiently supports task-specific performance across benchmarks, especially with diverse model contributions. Balanced blending to preserve model diversity. gradient_clipping: CultriX/Qwen2.5-14B-Wernickev3: 0.85 CultriX/Qwenfinity-2.5-14B: 0.82 djuna/Q2.5-Veltha-14B-0.5: 0.92 CultriX/Qwen2.5-14B-Broca: 0.86 qingy2019/Qwen2.5-Math-14B-Instruct: 0.94 CultriX/SeQwence-14Bv1: 0.87 sometimesanotion/Qwen2.5-14B-Vimarckoso: 0.90 allknowingroger/QwenSlerp6-14B: 0.86 models: - model: CultriX/Qwen2.5-14B-Wernickev3 parameters: weight: 0.25 density: 0.72 - model: CultriX/Qwenfinity-2.5-14B parameters: weight: 0.22 density: 0.68 - model: djuna/Q2.5-Veltha-14B-0.5 parameters: weight: 0.20 density: 0.75 - model: CultriX/Qwen2.5-14B-Broca parameters: weight: 0.16 density: 0.68 - model: qingy2019/Qwen2.5-Math-14B-Instruct parameters: weight: 0.19 density: 0.75 - model: CultriX/SeQwence-14Bv1 parameters: weight: 0.13 density: 0.65 - model: sometimesanotion/Qwen2.5-14B-Vimarckoso parameters: weight: 0.11 density: 0.62 - model: allknowingroger/QwenSlerp6-14B parameters: weight: 0.09 density: 0.65 adaptive_merge_parameters: task_weights: tinyArc: 1.65 tinyHellaswag: 1.55 tinyMMLU: 1.7 tinyTruthfulQA: 1.95 tinyTruthfulQA_mc1: 1.75 tinyWinogrande: 1.8 IFEval: 2.0 BBH: 1.75 MATH: 2.2 GPQA: 1.85 MUSR: 1.95 MMLU-PRO: 1.85 # Consider reviewing task_weights to confirm alignment with latest performance data and benchmarks for optimal configuration. tokenizer_source: CultriX/Qwen2.5-14B-Wernickev3