Buildwellai commited on
Commit
8e8bcf4
·
verified ·
1 Parent(s): 234b4cb

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +100 -0
handler.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Dict, List, Any
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
4
+ import torch
5
+ from unsloth import FastLanguageModel # Import Unsloth
6
+ from dotenv import load_dotenv
7
+
8
+ load_dotenv()
9
+
10
+ class EndpointHandler:
11
+ def __init__(self, path=""):
12
+ """
13
+ Initializes the model and tokenizer.
14
+ """
15
+ # Key settings (from environment variables, with defaults)
16
+ max_seq_length = int(os.getenv("MAX_SEQ_LENGTH", 2048))
17
+ max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 512))
18
+ self.hf_token = os.getenv("HUGGINGFACE_TOKEN")
19
+ self.model_dir = os.getenv("MODEL_DIR", ".") # Ensure this is set correctly
20
+
21
+ print(f"MODEL_DIR: {self.model_dir}") # Debug print
22
+ print(f"Files in model directory: {os.listdir(self.model_dir)}") # VERY IMPORTANT
23
+
24
+ # --- 1. Load Config ---
25
+ # Load the configuration first to determine the base model type
26
+ self.config = AutoConfig.from_pretrained(self.model_dir, token=self.hf_token)
27
+
28
+ # --- 2. Load Tokenizer ---
29
+ # Load the tokenizer. Handle tokenizer loading errors.
30
+ try:
31
+ self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir, token=self.hf_token)
32
+ except Exception as e:
33
+ print(f"Error loading tokenizer: {e}")
34
+ raise
35
+
36
+ # --- 3. Load Model ---
37
+ # Load the base model *and* apply the LoRA adapter. Handle model loading.
38
+ try:
39
+ # Load base model (using config to determine correct class)
40
+ self.model = AutoModelForCausalLM.from_pretrained(
41
+ self.config.base_model_name_or_path, # Use base model from config!
42
+ config=self.config,
43
+ torch_dtype=torch.bfloat16, # Use bfloat16 if available
44
+ token=self.hf_token,
45
+ device_map="auto", # Let transformers handle device placement
46
+ )
47
+
48
+ # Load and apply the LoRA adapter
49
+ self.model = FastLanguageModel.get_peft_model(self.model, self.model_dir) #model_dir contains lora weights
50
+ FastLanguageModel.for_inference(self.model) #Unsloth speed up
51
+
52
+ except Exception as e:
53
+ print(f"Error loading model: {e}")
54
+ raise
55
+
56
+ # Define the prompt style
57
+ self.prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context.
58
+ Write a response that appropriately completes the request.
59
+ Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
60
+ ### Instruction:
61
+ You are BuildwellAI, an AI assistant specialized in UK building regulations and construction standards. You provide accurate, helpful information about building codes, construction best practices, and regulatory compliance in the UK.
62
+ Always be professional and precise in your responses.
63
+ ### Question:
64
+ {}
65
+ ### Response:
66
+ <think>{}"""
67
+
68
+
69
+
70
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
71
+ """
72
+ Processes the input and generates a response.
73
+ """
74
+ inputs = data.pop("inputs", None)
75
+ if inputs is None:
76
+ return [{"error": "No input provided. 'inputs' key missing."}]
77
+ if not isinstance(inputs, str):
78
+ return [{"error": "Invalid input type. 'inputs' must be a string."}]
79
+
80
+ input_text = self.prompt_style.format(inputs, "")
81
+
82
+ # Tokenize and move to CUDA (if available)
83
+ input_tokens = self.tokenizer([input_text], return_tensors="pt")
84
+ if torch.cuda.is_available():
85
+ input_tokens = input_tokens.to("cuda")
86
+
87
+
88
+ with torch.no_grad(): # Ensure no gradient calculation
89
+ output_tokens = self.model.generate(
90
+ input_ids=input_tokens.input_ids,
91
+ attention_mask=input_tokens.attention_mask,
92
+ max_new_tokens=max_new_tokens,
93
+ use_cache=True,
94
+ pad_token_id=self.tokenizer.eos_token_id,
95
+ eos_token_id=self.tokenizer.eos_token_id,
96
+ )
97
+
98
+ generated_text = self.tokenizer.batch_decode(output_tokens, skip_special_tokens=True)[0]
99
+ response = generated_text.split("### Response:")[-1].strip()
100
+ return [{"generated_text": response}]