from transformers import PretrainedConfig, PreTrainedModel, BertModel, BertConfig import timm import torch.nn as nn import torch import numpy from torchvision import transforms from PIL import Image class KEEPConfig(PretrainedConfig): model_type = "keep" # 标记模型类型 def __init__( self, vision_config=None, # Vision Encoder 的配置 text_config=None, # Text Encoder 的配置 projection_dim=768, # 投影维度,默认为 768 **kwargs, ): super().__init__(**kwargs) self.vision_config = vision_config self.text_config = text_config self.projection_dim = projection_dim class KEEPModel(PreTrainedModel): config_class = KEEPConfig # 绑定到自定义配置类 def __init__(self, config): super().__init__(config) # Vision Encoder (基于 timm 的 ViT) self.visual = timm.create_model( "vit_large_patch16_224", pretrained=False, img_size=224, patch_size=16, init_values=1e-5, num_classes=0, dynamic_img_size=True, ) # 线性投影层,将 Vision Encoder 的输出投影到 768 维 self.visual_head = nn.Sequential( nn.Linear(self.visual.num_features, config.projection_dim), nn.GELU(), nn.Linear(config.projection_dim, config.projection_dim) ) # Text Encoder (基于 PubMedBERT) text_config = BertConfig(**config.text_config) self.text = BertModel(text_config) self.logit_scale = nn.Parameter(torch.ones([]) * numpy.log(1 / 0.04)) def encode_image(self, image_inputs): vision_features = self.visual(image_inputs) # [batch_size, vision_dim] vision_features = torch.nn.functional.normalize(self.visual_head(vision_features), dim=-1) # [batch_size, projection_dim] return vision_features def encode_text(self, text_inputs): text_features = torch.nn.functional.normalize(self.text(**text_inputs).pooler_output, dim=-1) # [batch_size, text_dim] return text_features def forward(self, image_inputs, text_inputs): vision_features = self.encode_image(image_inputs) text_features = self.encode_text(text_inputs) # 返回两个独立的特征 return { "vision_features": vision_features, # 视觉特征 "text_features": text_features # 文本特征 }