Update README.md
Browse files
README.md
CHANGED
@@ -39,8 +39,32 @@ license: mit
|
|
39 |
|
40 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
### Downstream Use [optional]
|
45 |
|
46 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
@@ -96,7 +120,7 @@ Use the code below to get started with the model.
|
|
96 |
|
97 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
98 |
|
99 |
-
[More Information Needed]
|
100 |
|
101 |
## Evaluation
|
102 |
|
@@ -108,9 +132,9 @@ Use the code below to get started with the model.
|
|
108 |
|
109 |
<!-- This should link to a Dataset Card if possible. -->
|
110 |
|
111 |
-
[
|
112 |
|
113 |
-
#### Factors
|
114 |
|
115 |
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
116 |
|
@@ -121,15 +145,45 @@ Use the code below to get started with the model.
|
|
121 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
122 |
|
123 |
[More Information Needed]
|
124 |
-
|
125 |
### Results
|
126 |
|
127 |
-
[More Information Needed]
|
128 |
|
129 |
-
####
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
|
|
131 |
|
|
|
132 |
|
|
|
133 |
## Model Examination [optional]
|
134 |
|
135 |
<!-- Relevant interpretability work for the model goes here -->
|
@@ -164,7 +218,7 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
164 |
|
165 |
#### Software
|
166 |
|
167 |
-
[More Information Needed]
|
168 |
|
169 |
## Citation [optional]
|
170 |
|
@@ -178,7 +232,7 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
178 |
journal={arXiv preprint arXiv:2412.13126},
|
179 |
year={2024}
|
180 |
}
|
181 |
-
|
182 |
**APA:**
|
183 |
|
184 |
[More Information Needed]
|
@@ -199,4 +253,4 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
199 |
|
200 |
## Model Card Contact
|
201 |
|
202 |
-
[More Information Needed]
|
|
|
39 |
|
40 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
41 |
|
42 |
+
```python
|
43 |
+
from transformers import AutoModel, AutoTokenizer
|
44 |
+
from torchvision import transforms
|
45 |
+
from PIL import Image
|
46 |
+
|
47 |
+
model = AutoModel.from_pretrained("Astaxanthin/KEEP", trust_remote_code=True)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("Astaxanthin/KEEP", trust_remote_code=True)
|
49 |
+
model.eval()
|
50 |
+
transform = transforms.Compose([
|
51 |
+
transforms.Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC),
|
52 |
+
transforms.CenterCrop(size=(224, 224)),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
|
55 |
+
])
|
56 |
+
|
57 |
+
example_image_path = './quick_start/example.tif'
|
58 |
+
example_text = ['an H&E image of breast invasive carcinoma.', 'an H&E image of normal tissue.', 'an H&E image of lung adenocarcinoma.']
|
59 |
+
|
60 |
+
img_input = transform(Image.open(example_image_path).convert('RGB')).unsqueeze(0)
|
61 |
+
token_input = tokenizer(example_text,max_length=256,padding='max_length',truncation=True, return_tensors='pt')
|
62 |
+
|
63 |
+
img_feature = model.encode_image(img_input)
|
64 |
+
text_feature = model.encode_text(token_input)
|
65 |
+
|
66 |
+
```
|
67 |
+
<!--
|
68 |
### Downstream Use [optional]
|
69 |
|
70 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
|
|
120 |
|
121 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
122 |
|
123 |
+
[More Information Needed] -->
|
124 |
|
125 |
## Evaluation
|
126 |
|
|
|
132 |
|
133 |
<!-- This should link to a Dataset Card if possible. -->
|
134 |
|
135 |
+
We present benchmark results for a range of representative tasks. A complete set of benchmarks can be found in the [paper](https://arxiv.org/abs/2412.18***). These results will be updated with each new iteration of KEEP.
|
136 |
|
137 |
+
<!-- #### Factors
|
138 |
|
139 |
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
140 |
|
|
|
145 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
146 |
|
147 |
[More Information Needed]
|
148 |
+
-->
|
149 |
### Results
|
150 |
|
|
|
151 |
|
152 |
+
#### Zero-shot Cancer Region Segmentation (DICE)
|
153 |
+
| Models | PLIP[[1]](https://www.nature.com/articles/s41591-023-02504-3) | QuiltNet [[2]](https://proceedings.neurips.cc/paper_files/paper/2023/hash/775ec578876fa6812c062644964b9870-Abstract-Datasets_and_Benchmarks.html) | MI-Zero (Pub) [[3]](https://openaccess.thecvf.com/content/CVPR2023/html/Lu_Visual_Language_Pretrained_Multiple_Instance_Zero-Shot_Transfer_for_Histopathology_Images_CVPR_2023_paper.html) | CONCH [[4]](https://www.nature.com/articles/s41591-024-02856-4) | **KEEP(Ours)** |
|
154 |
+
|:---------------|--------------:|---------------------:|-------------------------:|-----------------:|------------------:|
|
155 |
+
| CAMELYON16 | 0.253 | 0.157 | 0.186 | 0.292 | **0.361** |
|
156 |
+
| PANDA | 0.295 | 0.309 | 0.276 | 0.315 | **0.334** |
|
157 |
+
| AGGC22 | 0.284 | 0.282 | 0.324 | 0.449 | **0.530** |
|
158 |
+
|
159 |
+
#### Zero-shot Cancer Detection (AUROC)
|
160 |
+
| Models | CHIEF[[1]](https://www.nature.com/articles/s41586-024-07894-z) | PLIP [[2]](https://www.nature.com/articles/s41591-023-02504-3) | QuiltNet [[3]](https://proceedings.neurips.cc/paper_files/paper/2023/hash/775ec578876fa6812c062644964b9870-Abstract-Datasets_and_Benchmarks.html) | MI-Zero (Pub) [[4]](https://openaccess.thecvf.com/content/CVPR2023/html/Lu_Visual_Language_Pretrained_Multiple_Instance_Zero-Shot_Transfer_for_Histopathology_Images_CVPR_2023_paper.html) | CONCH [[5]](https://www.nature.com/articles/s41591-024-02856-4) | KEEP(Ours) |
|
161 |
+
|:---------------|--------------:|--------------------:|-----------------:|-----------------:|------------------:| -----------------:|
|
162 |
+
| CPTAC-CM | 0.915 | 0.970 | 0.972 | 0.985 | **0.994** | **0.994** |
|
163 |
+
| CPTAC-CCRCC | 0.723 | 0.330 | 0.755 | 0.886 | 0.871 | **0.999** |
|
164 |
+
| CPTAC-PDA | 0.825 | 0.391 | 0.464 | 0.796 | 0.920 | **0.929** |
|
165 |
+
| CPTAC-UCEC | 0.955 | 0.945 | 0.973 | 0.979 | 0.996 | **0.998** |
|
166 |
+
| CPTAC-LSCC | 0.901 | 0.965 | 0.966 | 0.910 | **0.987** | 0.983 |
|
167 |
+
| CPTAC-HNSCC | 0.946 | 0.898 | 0.874 | 0.918 | **0.982** | 0.976 |
|
168 |
+
| CPTAC-LUAD | 0.891 | 0.988 | 0.991 | 0.981 | 0.999 | **1.000** |
|
169 |
+
|
170 |
+
#### Zero-shot Cancer Subtyping (BACC)
|
171 |
+
| Models | PLIP [[1]](https://www.nature.com/articles/s41591-023-02504-3) | QuiltNet [[2]](https://proceedings.neurips.cc/paper_files/paper/2023/hash/775ec578876fa6812c062644964b9870-Abstract-Datasets_and_Benchmarks.html) | MI-Zero (Pub) [[3]](https://openaccess.thecvf.com/content/CVPR2023/html/Lu_Visual_Language_Pretrained_Multiple_Instance_Zero-Shot_Transfer_for_Histopathology_Images_CVPR_2023_paper.html) | CONCH [[4]](https://www.nature.com/articles/s41591-024-02856-4) | **KEEP(Ours)** |
|
172 |
+
|:---------------|--------------:|---------------------------:|-------------------------:|-----------------:|------------------:|
|
173 |
+
| TCGA-BRCA | 0.519 | 0.500 | 0.633 | 0.727 | **0.774** |
|
174 |
+
| TCGA-NSCLC | 0.699 | 0.667 | 0.753 | 0.901 | **0.902** |
|
175 |
+
| TCGA-RCC | 0.735 | 0.755 | 0.908 | 0.921 | **0.926** |
|
176 |
+
| TCGA-ESCA | 0.614 | 0.746 | 0.954 | 0.923 | **0.977** |
|
177 |
+
| TCGA-BRAIN | 0.361 | 0.346 | 0.361 | 0.453 | **0.604** |
|
178 |
+
| UBC-OCEAN | 0.343 | 0.469 | 0.652 | **0.674** | 0.661 |
|
179 |
+
| CPTAC-NSCLC | 0.647 | 0.607 | 0.643 | 0.836 | **0.863** |
|
180 |
+
| EBRAINS | 0.096 | 0.093 | 0.325 | 0.371 | **0.456** |
|
181 |
|
182 |
+
#### Summary
|
183 |
|
184 |
+
Validated on 18 diverse benchmarks with more than 14,000 whole slide images (WSIs), KEEP achieves state-of-the-art performance in zero-shot cancer diagnostic tasks. Notably, for cancer detection, KEEP demonstrates an average sensitivity of 89.8% at a specificity of 95.0% across 7 cancer types, significantly outperforming vision-only foundation models and highlighting its promising potential for clinical application. For cancer subtyping, KEEP achieves a median balanced accuracy of 0.456 in subtyping 30 rare brain cancers, indicating strong generalizability for diagnosing rare tumors.
|
185 |
|
186 |
+
<!--
|
187 |
## Model Examination [optional]
|
188 |
|
189 |
<!-- Relevant interpretability work for the model goes here -->
|
|
|
218 |
|
219 |
#### Software
|
220 |
|
221 |
+
[More Information Needed] -->
|
222 |
|
223 |
## Citation [optional]
|
224 |
|
|
|
232 |
journal={arXiv preprint arXiv:2412.13126},
|
233 |
year={2024}
|
234 |
}
|
235 |
+
<!--
|
236 |
**APA:**
|
237 |
|
238 |
[More Information Needed]
|
|
|
253 |
|
254 |
## Model Card Contact
|
255 |
|
256 |
+
[More Information Needed] -->
|