AltLuv commited on
Commit
8bb68b2
·
1 Parent(s): 216dc83

End of training

Browse files
lr_scheduler/lr_scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6a7d0d9cabdbf4fb4d054a96278cf07983c703d71347b7308aa9dcf192d70138
3
  size 1076
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc9a5d647349c541df37221f857f1528d69a64ee8921808d7169158f833bb344
3
  size 1076
optimizer/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:731cb919eff7ff204a18d7a99a1b62717839c367823d744953745f379fbb3af6
3
- size 1149290750
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31f24ae8c9be356b80823017a6443f945de9d160bf797c00ddb5c588e5ddf595
3
+ size 1149290878
scheduler/scheduler_config.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "_class_name": "TorchSDE_PARAM",
3
- "_config_class_name": "SDEParameterizedBaseLineConfig",
4
  "_diffusers_version": "0.25.0.dev0",
5
  "data_dimension": 3072
6
  }
 
1
  {
2
  "_class_name": "TorchSDE_PARAM",
3
+ "_config_class_name": "SDEPolynomialConfig",
4
  "_diffusers_version": "0.25.0.dev0",
5
  "data_dimension": 3072
6
  }
scheduler/scheduler_config.py CHANGED
@@ -8,37 +8,48 @@ from sympy import Matrix, Symbol
8
  import math
9
  from sde_redefined_param import SDEDimension
10
  @dataclass
11
- class SDEParameterizedBaseLineConfig:
12
  name = "Custom"
13
- variable = Symbol('t', nonnegative=True, real=True)
14
 
 
 
 
 
 
15
  drift_dimension = SDEDimension.SCALAR
16
  diffusion_dimension = SDEDimension.SCALAR
17
  diffusion_matrix_dimension = SDEDimension.SCALAR
18
 
19
- # TODO (KLAUS): HANDLE THE PARAMETERS BEING Ø
20
- drift_parameters = Matrix([sympy.symbols("f1", real=True)])
21
- diffusion_parameters = Matrix([sympy.symbols("sigma_min sigma_max", real=True)])
22
-
23
- drift = 0
 
24
 
25
- sigma_min = sympy.Abs(diffusion_parameters[0]) #0.002
26
- sigma_max = sympy.Abs(diffusion_parameters[1]) #80
27
- diffusion = sigma_min * (sigma_max/sigma_min)**variable * sympy.sqrt(2 * sympy.Abs(sympy.log(sigma_max/sigma_min)))
 
 
 
 
 
 
 
 
28
 
29
  # TODO (KLAUS) : in the SDE SAMPLING CHANGING Q impacts how we sample z ~ N(0, Q*(delta t))
30
  diffusion_matrix = 1
31
 
32
- initial_variable_value = 0
33
- max_variable_value = 1 # math.inf
34
- min_sample_value = 0
35
 
36
  module = 'jax'
37
 
38
- drift_integral_form=False
39
- diffusion_integral_form=False
40
  diffusion_integral_decomposition = 'cholesky' # ldl
41
 
42
- non_symbolic_parameters = {'diffusion': torch.tensor([0.002, 80.])}
43
 
44
  target = "epsilon" # x0
 
 
8
  import math
9
  from sde_redefined_param import SDEDimension
10
  @dataclass
11
+ class SDEPolynomialConfig:
12
  name = "Custom"
 
13
 
14
+ initial_variable_value = 0
15
+ max_variable_value = 1# math.inf
16
+ min_sample_value = 1e-6
17
+
18
+ variable = Symbol('t', nonnegative=True, real=True, domain=sympy.Interval(initial_variable_value, max_variable_value, left_open=False, right_open=False))
19
  drift_dimension = SDEDimension.SCALAR
20
  diffusion_dimension = SDEDimension.SCALAR
21
  diffusion_matrix_dimension = SDEDimension.SCALAR
22
 
23
+ drift_degree = 20
24
+ diffusion_degree = 20
25
+
26
+ drift_parameters = Matrix([sympy.symbols(f"f:{drift_degree}", real=True, nonzero=True)])
27
+
28
+ diffusion_parameters = Matrix([sympy.symbols("l0", real=True, nonzero=True)])
29
 
30
+
31
+ @property
32
+ def drift(self):
33
+ transformed_variable = self.variable
34
+ return -sympy.Abs(sum(sympy.HadamardProduct(Matrix([[transformed_variable**i for i in range(1,self.drift_degree+1)]]), self.drift_parameters).doit()))
35
+
36
+
37
+ @property
38
+ def diffusion(self):
39
+
40
+ return self.variable**(self.diffusion_parameters[0]**2)
41
 
42
  # TODO (KLAUS) : in the SDE SAMPLING CHANGING Q impacts how we sample z ~ N(0, Q*(delta t))
43
  diffusion_matrix = 1
44
 
 
 
 
45
 
46
  module = 'jax'
47
 
48
+ drift_integral_form=True
49
+ diffusion_integral_form=True
50
  diffusion_integral_decomposition = 'cholesky' # ldl
51
 
52
+
53
 
54
  target = "epsilon" # x0
55
+ non_symbolic_parameters = {'drift': torch.ones(drift_degree)}
scheduler/sdeparameters.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5574e08de37650fa21ba29800959ee5ddb031e0e18d8b6a200240649e4afcc5c
3
- size 140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b59e815a0d5d903799db1da0cfaa61298044b04691741e1b76dd1404f6e6d38
3
+ size 220
text_encoder/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "AltLuv/pokemon-test",
3
  "architectures": [
4
  "CLIPTextModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "AltLuv/pokemon-test-tti",
3
  "architectures": [
4
  "CLIPTextModel"
5
  ],
unet/diffusion_pytorch_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b8a074b69da1eb235189af21eaa1c0a22d5dc4a300b197e868a70f74537e80a8
3
  size 574476604
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77aac723d4efa78d5f3f90d242c24cc384f2826c2459f7e2ee1b3e3dc2f8f022
3
  size 574476604