--- base_model: allenai/cs_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: cs_roberta_base-1 results: [] --- # cs_roberta_base-1 This model is a fine-tuned version of [allenai/cs_roberta_base](https://huggingface.co/allenai/cs_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3743 - Accuracy: 0.8905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 46 - eval_batch_size: 46 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3782 | 1.0 | 1044 | 0.9372 | 0.79 | | 0.7908 | 2.0 | 2088 | 0.6508 | 0.8418 | | 0.5942 | 3.0 | 3132 | 0.5638 | 0.8604 | | 0.4986 | 4.0 | 4176 | 0.4780 | 0.8707 | | 0.4301 | 5.0 | 5220 | 0.4408 | 0.8794 | | 0.3798 | 6.0 | 6264 | 0.4103 | 0.8821 | | 0.3388 | 7.0 | 7308 | 0.3938 | 0.8842 | | 0.3082 | 8.0 | 8352 | 0.3821 | 0.8909 | | 0.2842 | 9.0 | 9396 | 0.3852 | 0.887 | | 0.2674 | 10.0 | 10440 | 0.3743 | 0.8905 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0