Abdulrahman Al-Ghamdi
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -12,59 +12,71 @@ metrics:
|
|
12 |
base_model:
|
13 |
- aubmindlab/bert-base-arabertv02
|
14 |
pipeline_tag: text-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
- **Tokenization**:
|
33 |
-
- Used **AraBERT tokenizer**
|
34 |
- **Train-Test Split**:
|
35 |
- **80% Training** | **20% Testing**.
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
### **📊
|
41 |
| Metric | Score |
|
42 |
|-------------|--------|
|
43 |
-
| **Train Loss
|
44 |
-
| **Eval Loss**
|
45 |
-
| **Accuracy**
|
46 |
-
| **Precision**
|
47 |
-
| **Recall**
|
48 |
-
| **F1-score**
|
49 |
-
|
50 |
-
## ⚙️ Training Parameters
|
51 |
-
```python
|
52 |
-
model_name = "aubmindlab/bert-base-arabertv2"
|
53 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2, classifier_dropout=0.5).to(device)
|
54 |
|
|
|
|
|
55 |
training_args = TrainingArguments(
|
56 |
output_dir="./results",
|
57 |
-
evaluation_strategy="epoch",
|
58 |
-
save_strategy="epoch",
|
59 |
-
per_device_train_batch_size=8,
|
60 |
-
per_device_eval_batch_size=8,
|
61 |
-
num_train_epochs=4,
|
62 |
-
weight_decay=1,
|
63 |
-
learning_rate=1e-5,
|
64 |
-
lr_scheduler_type="cosine",
|
65 |
-
warmup_ratio=0.1,
|
66 |
fp16=True,
|
67 |
-
report_to="none",
|
68 |
save_total_limit=2,
|
69 |
gradient_accumulation_steps=2,
|
70 |
load_best_model_at_end=True,
|
@@ -72,4 +84,60 @@ training_args = TrainingArguments(
|
|
72 |
metric_for_best_model="eval_loss",
|
73 |
greater_is_better=False,
|
74 |
)
|
75 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
base_model:
|
13 |
- aubmindlab/bert-base-arabertv02
|
14 |
pipeline_tag: text-classification
|
15 |
+
tags:
|
16 |
+
- arabic
|
17 |
+
- sentiment-analysis
|
18 |
+
- transformers
|
19 |
+
- huggingface
|
20 |
+
- bert
|
21 |
+
- restaurants
|
22 |
+
- fine-tuning
|
23 |
+
- nlp
|
24 |
---
|
25 |
|
26 |
+
# **🍽️ Arabic Restaurant Review Sentiment Analysis 🚀**
|
27 |
+
|
28 |
+
## **📌 Overview**
|
29 |
+
This **fine-tuned AraBERT model** classifies **Arabic restaurant reviews** as **Positive** or **Negative**.
|
30 |
+
It is based on **aubmindlab/bert-base-arabertv2** and fine-tuned using **Hugging Face Transformers**.
|
31 |
+
|
32 |
+
### **🔥 Why This Model?**
|
33 |
+
✅ **Trained on Real Restaurant Reviews** from the **Hugging Face Dataset**.
|
34 |
+
✅ **Fine-tuned with Full Training** (not LoRA or Adapters).
|
35 |
+
✅ **Balanced Dataset** (2418 Positive vs. 2418 Negative Reviews).
|
36 |
+
✅ **High Accuracy & Performance** for Sentiment Analysis in Arabic.
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## **📥 Dataset & Preprocessing**
|
41 |
+
- **Dataset Source**: [`hadyelsahar/ar_res_reviews`](https://huggingface.co/datasets/hadyelsahar/ar_res_reviews)
|
42 |
+
- **Text Cleaning**:
|
43 |
+
- Removed **non-Arabic text**, special characters, and extra spaces.
|
44 |
+
- Normalized Arabic characters (`إ, أ, آ → ا`, `ة → ه`).
|
45 |
+
- Balanced **Positive & Negative** sentiment distribution.
|
46 |
- **Tokenization**:
|
47 |
+
- Used **AraBERT tokenizer** (`aubmindlab/bert-base-arabertv2`).
|
48 |
- **Train-Test Split**:
|
49 |
- **80% Training** | **20% Testing**.
|
50 |
|
51 |
+
---
|
52 |
+
|
53 |
+
## **🏋️ Training & Performance**
|
54 |
+
The model was fine-tuned using **Hugging Face Transformers** with the following hyperparameters:
|
55 |
|
56 |
+
### **📊 Final Model Results**
|
57 |
| Metric | Score |
|
58 |
|-------------|--------|
|
59 |
+
| **Train Loss** | `0.470` |
|
60 |
+
| **Eval Loss** | `0.373` |
|
61 |
+
| **Accuracy** | `86.41%` |
|
62 |
+
| **Precision** | `87.01%` |
|
63 |
+
| **Recall** | `86.49%` |
|
64 |
+
| **F1-score** | `86.75%` |
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
### **⚙️ Training Configuration**
|
67 |
+
```python
|
68 |
training_args = TrainingArguments(
|
69 |
output_dir="./results",
|
70 |
+
evaluation_strategy="epoch",
|
71 |
+
save_strategy="epoch",
|
72 |
+
per_device_train_batch_size=8,
|
73 |
+
per_device_eval_batch_size=8,
|
74 |
+
num_train_epochs=4,
|
75 |
+
weight_decay=1,
|
76 |
+
learning_rate=1e-5,
|
77 |
+
lr_scheduler_type="cosine",
|
78 |
+
warmup_ratio=0.1,
|
79 |
fp16=True,
|
|
|
80 |
save_total_limit=2,
|
81 |
gradient_accumulation_steps=2,
|
82 |
load_best_model_at_end=True,
|
|
|
84 |
metric_for_best_model="eval_loss",
|
85 |
greater_is_better=False,
|
86 |
)
|
87 |
+
```
|
88 |
+
|
89 |
+
---
|
90 |
+
|
91 |
+
## **💡 Usage**
|
92 |
+
### **1️⃣ Quick Inference using `pipeline()`**
|
93 |
+
```python
|
94 |
+
from transformers import pipeline
|
95 |
+
|
96 |
+
model_name = "Abduuu/ArabReview-Sentiment"
|
97 |
+
sentiment_pipeline = pipeline("text-classification", model=model_name)
|
98 |
+
|
99 |
+
review = "الطعام كان رائعًا والخدمة ممتازة!"
|
100 |
+
result = sentiment_pipeline(review)
|
101 |
+
print(result)
|
102 |
+
```
|
103 |
+
✅ **Example Output:**
|
104 |
+
```json
|
105 |
+
[{"label": "Positive", "score": 0.96}]
|
106 |
+
```
|
107 |
+
|
108 |
+
---
|
109 |
+
|
110 |
+
### **2️⃣ Use Model with `AutoModelForSequenceClassification`**
|
111 |
+
For **batch processing & lower latency**, use the `AutoModel` API:
|
112 |
+
```python
|
113 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
114 |
+
import torch
|
115 |
+
|
116 |
+
model_name = "Abduuu/ArabReview-Sentiment"
|
117 |
+
|
118 |
+
# Load Model & Tokenizer
|
119 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
120 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
121 |
+
|
122 |
+
# Example Review
|
123 |
+
review = "الخدمة كانت بطيئة والطعام غير جيد."
|
124 |
+
inputs = tokenizer(review, return_tensors="pt")
|
125 |
+
|
126 |
+
# Perform Inference
|
127 |
+
with torch.no_grad():
|
128 |
+
logits = model(**inputs).logits
|
129 |
+
prediction = torch.argmax(logits).item()
|
130 |
+
|
131 |
+
label_map = {0: "Negative", 1: "Positive"}
|
132 |
+
print(f"Predicted Sentiment: {label_map[prediction]}")
|
133 |
+
```
|
134 |
+
|
135 |
+
---
|
136 |
+
|
137 |
+
## **🔬 Model Performance (Real Examples)**
|
138 |
+
| Review | Prediction |
|
139 |
+
|--------|------------|
|
140 |
+
| "الطعام كان رائعًا والخدمة ممتازة!" | ✅ **Positive** |
|
141 |
+
| "التجربة كانت سيئة والطعام كان باردًا" | ❌ **Negative** |
|
142 |
+
|
143 |
+
---
|