File size: 4,261 Bytes
bd11536 190bd83 bd11536 190bd83 bd11536 190bd83 7eb3e22 bd11536 45ea391 1c3de2e e06c224 45ea391 7fee4fd 0ad19d7 45ea391 e06c224 45ea391 e06c224 45ea391 e06c224 45ea391 e06c224 45ea391 e06c224 45ea391 e06c224 45ea391 e06c224 55166e2 bac9cde 45ea391 7fee4fd 45ea391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: apache-2.0
datasets:
- hadyelsahar/ar_res_reviews
language:
- ar
metrics:
- accuracy
- precision
- recall
- f1
base_model:
- aubmindlab/bert-base-arabertv02
pipeline_tag: text-classification
tags:
- arabic
- sentiment-analysis
- transformers
- huggingface
- bert
- restaurants
- fine-tuning
- nlp
---
# **🍽️ Arabic Restaurant Review Sentiment Analysis 🚀**
## **📌 Overview**
This **fine-tuned AraBERT model** classifies **Arabic restaurant reviews** as **Positive** or **Negative**.
It is based on **aubmindlab/bert-base-arabertv2** and fine-tuned using **Hugging Face Transformers**.
### **🔥 Why This Model?**
✅ **Trained on Real Restaurant Reviews** from the **Hugging Face Dataset**.
✅ **Fine-tuned with Full Training** (not LoRA or Adapters).
✅ **Balanced Dataset** (2418 Positive vs. 2418 Negative Reviews).
✅ **High Accuracy & Performance** for Sentiment Analysis in Arabic.
**🚀 Try the Model Now!**
<p align="center">
<a href="https://huggingface.co/spaces/Abduuu/Arabic-Reviews-Sentiment-Analysis">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-lg-dark.svg" alt="Open in HF Spaces" width="250px">
</a>
</p>
---
## **📥 Dataset & Preprocessing**
- **Dataset Source**: [`hadyelsahar/ar_res_reviews`](https://huggingface.co/datasets/hadyelsahar/ar_res_reviews)
- **Text Cleaning**:
- Removed **non-Arabic text**, special characters, and extra spaces.
- Normalized Arabic characters (`إ, أ, آ → ا`, `ة → ه`).
- Balanced **Positive & Negative** sentiment distribution.
- **Tokenization**:
- Used **AraBERT tokenizer** (`aubmindlab/bert-base-arabertv2`).
- **Train-Test Split**:
- **80% Training** | **20% Testing**.
---
## **🏋️ Training & Performance**
The model was fine-tuned using **Hugging Face Transformers** with the following hyperparameters:
### **📊 Final Model Results**
| Metric | Score |
|-------------|--------|
| **Train Loss** | `0.470` |
| **Eval Loss** | `0.373` |
| **Accuracy** | `86.41%` |
| **Precision** | `87.01%` |
| **Recall** | `86.49%` |
| **F1-score** | `86.75%` |
### **⚙️ Training Configuration**
```python
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=4,
weight_decay=1,
learning_rate=1e-5,
lr_scheduler_type="cosine",
warmup_ratio=0.1,
fp16=True,
save_total_limit=2,
gradient_accumulation_steps=2,
load_best_model_at_end=True,
max_grad_norm=1.0,
metric_for_best_model="eval_loss",
greater_is_better=False,
)
```
---
## **💡 Usage**
### **1️⃣ Quick Inference using `pipeline()`**
```python
from transformers import pipeline
model_name = "Abduuu/ArabReview-Sentiment"
sentiment_pipeline = pipeline("text-classification", model=model_name)
review = "الطعام كان رائعًا والخدمة ممتازة!"
result = sentiment_pipeline(review)
print(result)
```
✅ **Example Output:**
```json
[{'label': 'Positive', 'score': 0.91551274061203}]]
```
---
### **2️⃣ Use Model with `AutoModelForSequenceClassification`**
For **batch processing & lower latency**, use the `AutoModel` API:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
model_name = "Abduuu/ArabReview-Sentiment"
# Load Model & Tokenizer
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Example Review
review = "الخدمة كانت بطيئة والطعام غير جيد."
inputs = tokenizer(review, return_tensors="pt")
# Perform Inference
with torch.no_grad():
logits = model(**inputs).logits
prediction = torch.argmax(logits).item()
label_map = {0: "Negative", 1: "Positive"}
print(f"Predicted Sentiment: {label_map[prediction]}")
```
---
## **🔬 Model Performance (Real Examples)**
| Review | Prediction |
|--------|------------|
| "الطعام كان رائعًا والخدمة ممتازة!" | ✅ **Positive** |
| "التجربة كانت سيئة والطعام كان باردًا" | ❌ **Negative** |
--- |