File size: 4,183 Bytes
4c73926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: mit
base_model: cointegrated/rubert-tiny2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: tiny-rubert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tiny-rubert

This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5730
- Accuracy: 0.4956
- F1: 0.6380
- Precision: 0.7116
- Recall: 0.5873

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 0.2569 | 500   | 4.0706          | 0.0551   | 0.0257 | 0.0397    | 0.0556 |
| 4.3917        | 0.5139 | 1000  | 3.3738          | 0.2871   | 0.2256 | 0.4551    | 0.2810 |
| 2.4111        | 0.7708 | 1500  | 3.0120          | 0.4041   | 0.4675 | 0.6818    | 0.4345 |
| 1.6023        | 1.0277 | 2000  | 2.8194          | 0.4454   | 0.5570 | 0.7232    | 0.4930 |
| 1.2666        | 1.2847 | 2500  | 2.7362          | 0.4553   | 0.5615 | 0.7195    | 0.5    |
| 1.0944        | 1.5416 | 3000  | 2.6636          | 0.4513   | 0.5783 | 0.7227    | 0.5106 |
| 1.0944        | 1.7986 | 3500  | 2.5940          | 0.4543   | 0.5842 | 0.7290    | 0.5134 |
| 1.0351        | 2.0555 | 4000  | 2.5506          | 0.4690   | 0.5953 | 0.7435    | 0.5254 |
| 0.9259        | 2.3124 | 4500  | 2.5396          | 0.4474   | 0.5780 | 0.7272    | 0.5127 |
| 0.802         | 2.5694 | 5000  | 2.4499          | 0.4680   | 0.6044 | 0.7420    | 0.5310 |
| 0.7777        | 2.8263 | 5500  | 2.4295          | 0.4661   | 0.5902 | 0.7239    | 0.5232 |
| 0.7247        | 3.0832 | 6000  | 2.4434          | 0.4631   | 0.5880 | 0.7245    | 0.5197 |
| 0.7247        | 3.3402 | 6500  | 2.4479          | 0.4769   | 0.6023 | 0.7401    | 0.5352 |
| 0.6062        | 3.5971 | 7000  | 2.4713          | 0.4720   | 0.6076 | 0.7465    | 0.5359 |
| 0.6207        | 3.8541 | 7500  | 2.4590          | 0.4779   | 0.6020 | 0.7284    | 0.5359 |
| 0.6021        | 4.1110 | 8000  | 2.4468          | 0.4926   | 0.6333 | 0.7359    | 0.5676 |
| 0.4891        | 4.3679 | 8500  | 2.4930          | 0.4848   | 0.6232 | 0.7313    | 0.5599 |
| 0.4983        | 4.6249 | 9000  | 2.4374          | 0.4936   | 0.6249 | 0.7239    | 0.5676 |
| 0.4983        | 4.8818 | 9500  | 2.4792          | 0.4956   | 0.6246 | 0.7208    | 0.5648 |
| 0.4789        | 5.1387 | 10000 | 2.5257          | 0.4897   | 0.6355 | 0.7117    | 0.5845 |
| 0.4353        | 5.3957 | 10500 | 2.5430          | 0.4946   | 0.6358 | 0.7276    | 0.5761 |
| 0.3995        | 5.6526 | 11000 | 2.5579          | 0.4887   | 0.6340 | 0.7188    | 0.5782 |
| 0.4005        | 5.9096 | 11500 | 2.5249          | 0.4828   | 0.6305 | 0.7014    | 0.5824 |
| 0.3774        | 6.1665 | 12000 | 2.6100          | 0.4838   | 0.6295 | 0.7194    | 0.5725 |
| 0.3774        | 6.4234 | 12500 | 2.5730          | 0.4956   | 0.6380 | 0.7116    | 0.5873 |
| 0.3502        | 6.6804 | 13000 | 2.6117          | 0.4916   | 0.6358 | 0.7066    | 0.5880 |
| 0.3562        | 6.9373 | 13500 | 2.6457          | 0.4956   | 0.6373 | 0.7185    | 0.5838 |
| 0.3453        | 7.1942 | 14000 | 2.6547          | 0.4848   | 0.6316 | 0.7062    | 0.5810 |
| 0.3213        | 7.4512 | 14500 | 2.6828          | 0.4877   | 0.6258 | 0.7035    | 0.5746 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Tokenizers 0.19.1